
Training-Set Influence
Analysis and Estimation

Zayd Hammoudeh
University of Oregon

October 14, 2022

A Running Example…

𝑓

Untrained
Classifier

2

A Running Example…

𝑓

Untrained
Classifier

Cat

Dog

Binary Classification

2

A Running Example…

𝑓

Untrained
Classifier

Cat

Dog

Binary Classification

Input Output
Correct

Wrong

50/50 chance prediction
is correct/wrong

2

Untrained
Classifier

Building a Common Intuition – Effect of Training

𝑓

3

Untrained
Classifier

Building a Common Intuition – Effect of Training

𝑓

3

Training Set (Size 𝑛)

Untrained
Classifier

Building a Common Intuition – Effect of Training

𝑓

3

Training Set (Size 𝑛)

Untrained
Classifier

Building a Common Intuition – Effect of Training

𝑓

3

Training Set (Size 𝑛)

Untrained
Classifier

Building a Common Intuition – Effect of Training

𝑓

3

Training Set (Size 𝑛)

Building a Common Intuition – Effect of Training

𝑓

Trained
Classifier 3

Training Set (Size 𝑛)

Building a Common Intuition – Effect of Training

𝑓

Trained
Classifier 3

Training Set (Size 𝑛)

Ref. Test
Instance

Building a Common Intuition – Effect of Training

𝑓

Trained
Classifier

Input Output

Correct

3

Training Set (Size 𝑛)

Ref. Test
Instance

Building a Common Intuition – Training Data

• Exactly how and what a neural network learns from training set
is poorly understood

• Deep models are functionally black boxes

• Generally unclear why a deep model made a specific prediction

• The training set is foundational to every ML model but is too
often overlooked

4

Do You Know Your Training Data?

Consider the last machine learning model you trained. Can you answer basic
questions about your training data?

5

Do You Know Your Training Data?

Consider the last machine learning model you trained. Can you answer basic
questions about your training data?

• Is model prediction well-supported by the training data?

• Which training instances made a model prediction better? Which made it worse?

• Has the training data been manipulated by a malicious actor?

5

Do You Know Your Training Data?

Consider the last machine learning model you trained. Can you answer basic
questions about your training data?

• Is model prediction well-supported by the training data?

• Which training instances made a model prediction better? Which made it worse?

• Has the training data been manipulated by a malicious actor?

Models can learn meaningful features from the training data but also spurious features

5

Untrained
Classifier

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Training Set

Random Training Set

Untrained
Classifier

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random Training Set

Untrained
Classifier

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random Training Set

Untrained
Classifier

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random Training Set

Untrained
Classifier

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random-Label
Trained
Classifier

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random-Label
Trained
Classifier

Train Instance

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

Input Output

Correct

6

Random-Label
Trained
Classifier

Train Instance

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random-Label
Trained
Classifier

Train Instance

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

Input Output

Correct

6

Random-Label
Trained
Classifier

Train Instance

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random-Label
Trained
Classifier

Train Instance

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random-Label
Trained
Classifier

Train Instance

Insight #1: Near 0% Training Error

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Random-Label
Trained
Classifier

Insight #1: Near 0% Training Error

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Test Instance

Random-Label
Trained
Classifier

Insight #1: Near 0% Training Error

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

6

Test Instance

Random-Label
Trained
Classifier

Insight #1: Near 0% Training Error

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

Input Output

6

Test Instance

Random-Label
Trained
Classifier

Correct

Wrong

Insight #1: Near 0% Training Error

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

Input Output

6

Test Instance

Random-Label
Trained
Classifier

Correct

Wrong

Insight #1: Near 0% Training Error

Insight #2: 50% Test Error

Random Training Set

Neural Networks Can Learn Nonsense [Zha+17]

𝑓

Input Output

6

Test Instance

Random-Label
Trained
Classifier

Correct

Wrong

Insight #1: Near 0% Training Error

Insight #2: 50% Test Error

Question: How do we identify and
debug training set issues?

Not Knowing Our Training Data is Bad…

Claim: Our inability to answer basic questions about our training
set is bad for many reasons including:

• Prevents fixing model issues
• Why is your model learning spurious features from good data?

• Prevents fixing training-set issues
• Is your model issue actually a training-set issue?

7

A Single Core Question

What is the effect of each training instance on the model?

8

A Single Core Question

What is the effect of each training instance on the model?

“Effect” depends on a specific perspective. It can be:
• With respect to a single prediction or all predictions
• Relative or absolute
• Beneficial or harmful

8

A Single Core Question

What is the effect of each training instance on the model?

“Effect” depends on a specific perspective. It can be:
• With respect to a single prediction or all predictions
• Relative or absolute
• Beneficial or harmful

Training-Set Influence Analysis: Apportions credit (and blame) for specific
model behaviors to training instances

8

What is Data’s “Effect” Anyway?

There are many different (even orthogonal) definitions of
training-set influence.

• This talk focuses on the simplest and most common perspective on
training-set influence
• See our full paper for additional perspectives on training-set influence

9

Pointwise Training-Set Influence

10

Pointwise Training-Set Influence

Quantifies how a single training instance affected trained model 𝑓’s
prediction on a single (reference) test instance

10

Pointwise Training-Set Influence

Quantifies how a single training instance affected trained model 𝑓’s
prediction on a single (reference) test instance

Common metrics used to quantify a training instance’s pointwise
influence:
• Accuracy
• Test loss

10

Pointwise Training-Set Influence

Quantifies how a single training Better test prediction
ed model 𝑓’s prediction on a single (reference) test instance

Common metrics used to quantify a training instance’s pointwise influence:
• Accuracy
• Test loss

Convention: Positive influence ⟹ Better test prediction

10

Training-Set Influence Estimation
Measuring training-set influence exactly can be NP-complete.

To make influence analysis more tractable, influence estimators are used in practice.
• Many influence estimators have been proposed

• Each estimator relies on different assumptions and formulations

11

Training-Set Influence Estimation
Measuring training-set influence exactly can be NP-complete.

To make influence analysis more tractable, influence estimators are used in practice.
• Many influence estimators have been proposed

• Each estimator relies on different assumptions and formulations

This talk reviews the most impactful pointwise influence analysis methods.
• High-level description

• Time, storage, and space complexities

• Strengths and weaknesses

11

12

Retraining
Based

Gradient
Based

Leave-
One-Out Downsampling Shapley

Value
Influence
Functions

Representer
Point

Static

TracIn HyDRA

Dynamic

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

12

Retraining
Based

Leave-
One-Out Downsampling Shapley

Value

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

Retraining-Based
Influence Analysis

13

Retraining-Based Influence: An Intuition

Instances only affect a model if they are part of the training set

Train two models:
1. One with the instance in the training set
2. Retrain without that instance

Influence: The difference in the two models’ predictions

14

Retraining-Based Influence Analysis

The next set of slides reviews three retraining-based influence analysis
methods.
• Leave-One-Out
• Downsampling
• Shapley Value

Each method builds on mitigates some of the weaknesses of the
preceding method.

15

17

Retraining
Based

Leave-
One-Out

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

17

Retraining
Based

Leave-
One-Out

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

Method #1: Leave-One-Out Influence [CW82]

Trained
Classifier

𝑓

18

Training Set (Size 𝑛)

Method #1: Leave-One-Out Influence [CW82]

Trained
Classifier

𝑓

18

Training Set (Size 𝑛)

Method #1: Leave-One-Out Influence [CW82]

Trained
Classifier

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

Method #1: Leave-One-Out Influence [CW82]

Trained
Classifier

𝑓

Input Output

18

Training Set (Size 𝑛)

Ref. Test Instance

Method #1: Leave-One-Out Influence [CW82]

Trained
Classifier

𝑓

Input Output

Correct

18

Training Set (Size 𝑛)

Ref. Test Instance

Accuracy = 1

Method #1: Leave-One-Out Influence [CW82]

Trained
Classifier

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

Method #1: Leave-One-Out Influence [CW82]

Trained
Classifier

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

Method #1: Leave-One-Out Influence [CW82]

Trained
Classifier

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

X

Method #1: Leave-One-Out Influence [CW82]

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

X

LOO Trained
Classifier #1

Method #1: Leave-One-Out Influence [CW82]

𝑓

Input Output

Correct

18

Training Set (Size 𝑛)

Ref. Test Instance

X

LOO Trained
Classifier #1

Accuracy = 1

Method #1: Leave-One-Out Influence [CW82]

𝑓

Input Output

Correct

18

Training Set (Size 𝑛)

Ref. Test Instance

X

LOO Trained
Classifier #1

Accuracy = 1

𝐼!"" = Acc#$%& − Acc#/"

Method #1: Leave-One-Out Influence [CW82]

𝑓

Input Output

Correct

18

Training Set (Size 𝑛)

Ref. Test Instance

X

LOO Trained
Classifier #1

Accuracy = 1

𝐼!"" = Acc#$%& − Acc#/"

𝐼!"" = 1 − 1 = 0

Method #1: Leave-One-Out Influence [CW82]

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

𝐼!"" = Acc#$%& − Acc#/"

𝐼!"" = 1 − 1 = 0

Method #1: Leave-One-Out Influence [CW82]

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

𝐼!"" = Acc#$%& − Acc#/"

𝐼!"" = 1 − 1 = 0

Method #1: Leave-One-Out Influence [CW82]

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

𝐼!"" = Acc#$%& − Acc#/"

X
𝐼!"" = 1 − 1 = 0

LOO Trained
Classifier #2

Method #1: Leave-One-Out Influence [CW82]

𝑓

18

Training Set (Size 𝑛)

Ref. Test Instance

𝐼!"" = Acc#$%& − Acc#/"

X
𝐼!"" = 1 − 1 = 0

LOO Trained
Classifier #2

Method #1: Leave-One-Out Influence [CW82]

𝑓

Input Output

18

Training Set (Size 𝑛)

Ref. Test Instance

Wrong

𝐼!"" = Acc#$%& − Acc#/"

Accuracy = 0

X
𝐼!"" = 1 − 1 = 0

LOO Trained
Classifier #2

Method #1: Leave-One-Out Influence [CW82]

𝑓

Input Output

18

Training Set (Size 𝑛)

Ref. Test Instance

Wrong

𝐼!"" = Acc#$%& − Acc#/"

Accuracy = 0

𝐼!"" = 1 − 0 = 1
X

𝐼!"" = 1 − 1 = 0

Leave-One-Out Influence’s Complexity
Time Complexity

• Full: 𝒪 𝑛𝑇
• Train 𝑛 + 1 models with 𝑇 iterations per model

• Amortizable & parallelizable

• Incremental: 𝒪(𝑛)

Storage Complexity: 𝒪(𝑛𝑝)
• Store the 𝑛 + 1 models
• 𝑝 – Size of a model

Space Complexity: 𝒪(𝑛 + 𝑝)
• 𝑛 – Influence value for each of the 𝑛 training instances

19

Leave-One-Out: Strengths & Weaknesses
Strengths:
+ Intuitive and human interpretable
+Fast incremental time complexity – just 𝑛 forward passes
+Most influence estimators based on LOO

Weaknesses:
- Large upfront cost
- Complexity dependent on training set size (𝑛)

20

Leave-One-Out: Strengths & Weaknesses
Strengths:
+ Intuitive and human interpretable
+Fast incremental time complexity – just 𝑛 forward passes
+Most influence estimators based on LOO

Weaknesses:
- Large upfront cost
- Complexity dependent on training set size (𝑛)

20
Question: Can we remove LOO’s dependence on 𝑛?

21

Retraining
Based

Downsampling

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

21

Retraining
Based

Downsampling

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

Method #2: Downsampling [FZ20]

Key Feature: Much faster version of LOO

• random training subsets of size 0.5𝑛

• Train 𝐾 models each using a different training subset

• Use 𝐾 model predictions to estimate LOO

• In Practice: 𝐾 ≪ 𝑛

22

Method #2: Downsampling [FZ20]

𝑛𝑛
𝑛𝑛
.5𝑛𝑛

Key Feature: Much faster version of LOO

• Basic Procedure:
• Train 𝐾 models each using a different training subset

• Use 𝐾 model predictions to estimate LOO

• In Practice: 𝐾 ≪ 𝑛
• In Practice: 𝐾 ≪ 𝑛
• In Practice: 𝐾 ≪ 𝑛

22

Method #2: Downsampling

23

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

6𝐼)* =
1
4
−
3
4
= −0.5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

6𝐼)* =
1
4
−
3
4
= −0.5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

6𝐼)* =
1
4
−
3
4
= −0.5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

6𝐼)* =
1
4
−
3
4
= −0.5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

6𝐼)* =
1
4
−
3
4
= −0.5

Method #2: Downsampling

23

𝐾 = 8 Training Subsets

1

2

3

4

5

6

7

8

Train 𝐾
Models

Ref. Test
Instance

𝑓!

𝑓"

𝑓#

𝑓$

𝑓%

𝑓&

𝑓'

𝑓(

)𝐼./ = Acc0123 − Acc0/5

6𝐼)* =
1
4
−
3
4
= −0.5

6𝐼)* =
4
4 −

0
4 = 1

Downsampling’s Complexity

Time Complexity

• Full: 𝒪 𝐾𝑇

• Incremental: 𝒪(𝐾)

Storage Complexity: 𝒪(𝐾𝑝)

Space Complexity: 𝒪(𝑛 + 𝑝)

24

Downsampling: Strengths & Weaknesses
Strengths:
Estimates the expected LOO influence

Considers effect of training’s rando

25

26

Retraining
Based

Shapley
Value

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

26

Retraining
Based

Shapley
Value

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

Method #3: Retraining + Game Theory

Cooperative Game Theory: Attempts to predict how players in a multiagent
game cooperate to achieve shared objectives.

A training set can be viewed as a coalition of 𝑛 players

• Groups of training instances cooperate during model training to improve
the model’s performance

• Each group of training instances has a “value” – positive or negative

27

Method #3: Shapley Value [GZ19]

Proposed originally [Sha53] in the context of cooperative game
theory

Shapley value influence: Each training instance’s average leave-
out-influence across all possible training subsets

28

Method #3: Shapley Value [GZ19]

Proposed originally [Sha53] in the context of cooperative game
theory

Shapley value influence: Each training instance’s average leave-
out-influence across all possible training subsets

• Question: How many possible training subsets are there?

28

Relating Leave-One-Out & Shapley Value

Recall the Leave-One-Out Influence

𝐼!"" = Acc#$%& − Acc#/"

• Acc#$%& is w.r.t. the full training set (size 𝑛)

• Acc#/": Considers a single training subset (size 𝑛 − 1)

29

Relating Leave-One-Out & Shapley Value

Shapley Value Influence Basic Procedure:

• Train a model on each of the 2- training subsets

• Calculate the LOO influence across 2-./ LOO model pairs

• Average the 2-./ LOO influences

30

Relating Leave-One-Out & Shapley Value

Shapley Value Influence Basic Procedure:

• Train a model on each of the 2- training subsets

• Calculate the LOO influence across 2-./ LOO model pairs

• Average the 2-./ LOO influences

Exponential time

30

Relating Leave-One-Out & Shapley Value

Shapley Value Influence Basic Procedure:

• Train a model on each of the 2- training subsets

• Calculate the LOO influence across 2-./ LOO model pairs

• Average the 2-./ LOO influences

Exponential time

• Provably hard: #P Complete
30

Shapley Value’s Complexity

Time Complexity
• Full: 𝒪 2, 𝑇

• Incremental: 𝒪(2,)

Storage Complexity: 𝒪(2>𝑝)

Space Complexity: 𝒪(𝑛 + 𝑝)

Significant follow-on work has focused on
heuristically speeding up Shapley value estimation.

32

Shapley Value: Strengths & Weaknesses

Strengths:

+Extensively studied and well motivated theoretically

+Detects “difficult” test instances that other retraining-based
methods may miss

Weaknesses:

- Catastrophic execution time

33

Big Picture Summary:
Retraining-Based Influence Analysis

34

Big Picture Summary:
Retraining-Based Influence Analysis
Strengths:

+Simple. Works for any model class with few assumptions

+ Intuitive and human interpretable

+Low incremental time complexity

Weaknesses:

- Huge storage and upfront time complexities
34

Multiple retrainings are expensive.
• For large models, repeated retraining is even prohibitive.

35

Multiple retrainings are expensive.
• For large models, repeated retraining is even prohibitive.

Question: Can training-set influence be accurately
measured without any model retraining?

35

36

Retraining
Based

Gradient
Based

Leave-
One-Out Downsampling Shapley

Value
Influence
Functions

Representer
Point

Static

TracIn HyDRA

Dynamic

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

36

Gradient
Based

Influence
Functions

Representer
Point

Static

TracIn HyDRA

Dynamic

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

Gradient-Based
Influence Analysis

37

Why Use Gradients to Estimate Influence?

Training instances only affect the model through gradients

• Intuition: Training gradients have everything we need to measure influence

Key Themes for Gradient-Based Influence Estimation:

• No model retraining

• Model and loss assumed differentiable

• Rely on Taylor-series expansions

38

Partitioning Gradient-Based Influence Estimators

Static Estimators: Estimate influence using only the final model parameters
• Influence Functions [KL17]

• Representer Point [Yeh+18]

Dynamic Estimators: Reconstruct the training set’s influence by studying all
model parameters across all training iterations
• TracIn [Pru+20]

• HyDRA [Che+21]

39

40

Retraining
Based

Gradient
Based

Leave-
One-Out Downsampling Shapley

Value
Influence
Functions

Representer
Point

Static

TracIn HyDRA

Dynamic

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

40

Gradient
Based

Influence
Functions

Representer
Point

Static

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

How Can Static Influence Estimation Actually Work?

The final model parameters contain very limited information

• Much less information than is used by retraining-based as well as dynamic
gradient-based methods

Rule of Thumb: Static influence estimators are simpler than dynamic ones

41

How Can Static Influence Estimation Actually Work?

The final model parameters contain very limited information

• Much less information than is used by retraining-based as well as dynamic
gradient-based methods

Rule of Thumb: Static influence estimators are simpler than dynamic ones

No Free Lunch: Static estimators make very strong assumptions that do not
hold for deep models

41

Method #4: Influence Functions [KL17]

Best-known and most well-studied influence estimator
• Based on influence functions from robust statistics [Jae72, Ham74]

Estimates the Leave-One-Influence:
𝐼!"" = Loss#/" − Loss#%&' ≈ *𝐼()

Very Strong Assumption: Strict convexity and stationarity

42

Method #4: Influence Functions [KL17]

Best-known and most well-studied influence estimator
• Based on influence functions from robust statistics [Jae72, Ham74]

Estimates the Leave-One-Influence:
𝐼!"" = Loss#/" − Loss#%&' ≈ *𝐼()

Very Strong Assumption: Strict convexity and stationarity
+Enables a closed-form LOO influence estimate

42

43

Visualizing Influence Functions

1𝐼56 = Loss#/" − Loss#$%&

43

Visualizing Influence Functions

Full	Training	Set:
Loss0123 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜃 , Cat)

1𝐼56 = Loss#/" − Loss#$%&

43

Visualizing Influence Functions

Full	Training	Set:
Loss0123 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜃 , Cat)

1𝐼56 = Loss#/" − Loss#$%&

43

Visualizing Influence Functions

Full	Training	Set:
Loss0123 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜃 , Cat)

Leave							Out:
Loss0/5 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜽′ , Cat)

1𝐼56 = Loss#/" − Loss#$%&

43

Visualizing Influence Functions

Full	Training	Set:
Loss0123 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜃 , Cat)

Leave							Out:
Loss0/5 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜽′ , Cat)

1𝐼56 = Loss#/" − Loss#$%&

43

Visualizing Influence Functions

Full	Training	Set:
Loss0123 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜃 , Cat)

Leave							Out:
Loss0/5 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜽′ , Cat)

1𝐼56 = Loss#/" − Loss#$%&

43

Visualizing Influence Functions

Δ𝜃

Full	Training	Set:
Loss0123 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜃 , Cat)

Leave							Out:
Loss0/5 = 𝐿𝑜𝑠𝑠(𝑓 ; 𝜽′ , Cat)

1𝐼56 = Loss#/" − Loss#$%&

43

Visualizing Influence Functions

Δ𝜃

6𝐼+,

Formalizing Influence Functions

We need to extend our nomenclature a bit

• 𝑓: Neural network

• 𝜃: Final model parameters

• 𝐿: Loss function

• 𝑧7: Training instance

• 𝑧%8: Test instance

44

LOO estimate of training instance 𝑧" influence on test instance 𝑧#$

1𝐼56 ≔
1
𝑛
∇9𝐿 𝑧7; 𝜃 𝐻9./ ∇9𝐿 𝑧%8; 𝜃

Influence Functions Closed Form

45

Training
Gradient

Inverse Empirical
Risk Hessian

Test
Gradient

LOO estimate of training instance 𝑧" influence on test instance 𝑧#$

1𝐼56 ≔
1
𝑛
∇9𝐿 𝑧7; 𝜃 𝐻9./ ∇9𝐿 𝑧%8; 𝜃

Influence Functions Closed Form

45

Training
Gradient

Inverse Empirical
Risk Hessian

Test
Gradient

LOO estimate of training instance 𝑧" influence on test instance 𝑧#$

1𝐼56 ≔
1
𝑛
∇9𝐿 𝑧7; 𝜃 𝐻9./ ∇9𝐿 𝑧%8; 𝜃

Influence Functions Closed Form

45

Training
Gradient

Inverse Empirical
Risk Hessian

Test
Gradient

LOO estimate of training instance 𝑧" influence on test instance 𝑧#$

1𝐼56 ≔
1
𝑛
∇9𝐿 𝑧7; 𝜃 𝐻9./ ∇9𝐿 𝑧%8; 𝜃

Influence Functions Closed Form

45

Training
Gradient

Inverse Empirical
Risk Hessian

Test
Gradient

Influence Functions & Risk Hessians
Calculating 𝐻-./ exactly is intractable

• Time Complexity: 𝒪 𝑛𝑝0 + 𝑝1

• Space: 𝒪(𝑝0)

∇-𝐿 𝑧23; 𝜃
• Still slow - 𝑂(𝑛𝑝) time complexity
• Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22]

46

Influence Functions & Risk Hessians

𝑛𝑛𝑝𝑝)	time complexity
1 𝐻 𝜃 −1		∇	𝜃 ∇	∇	𝜃 𝜃𝜃 ∇	𝜃 𝐿𝐿 𝑧 te	;𝜃 𝑧 te	𝑧𝑧 𝑧 te	te	𝑧 te	;𝜃𝜃 𝑧 te	;𝜃

Calculating 𝐻A
BC exactly is intractable

• Time Complexity: 𝒪 𝑛𝑝D + 𝑝E

• Space: 𝒪(𝑝D)

• Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22] Still
slow - 𝑂(𝑛𝑝) time complexity
• Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22]

46

Influence Functions’ Complexity

Time Complexity

• Full & Incremental: 𝒪 𝑛𝑝

Storage Complexity: 𝒪(1)

Space Complexity: 𝒪(𝑛 + 𝑝)

47

Influence Functions: Strengths & Weaknesses

Strengths:
+ Lower upfront time complexity than retraining-based methods

+ Most well-studied gradient-based influence method

Weaknesses:
- HVP estimation is inaccurate, fragile, and numerically unstable

- Relies on assumptions that do not hold for deep models

- No incremental time complexity gains (slow)

48

Method #5: Representer Point [Yeh+18]

• Key Feature: Fastest influence analysis method

• Strong Assumptions: Linearity and stationarity

• Estimates influence using a linearized representation of the deep
model.

49

Method #5: Representer Point

50

General Multilayer Model

Method #5: Representer Point

50

Input
Cat

Dog

General Multilayer Model

Output

F𝑦

Method #5: Representer Point

50

Input
Cat

Dog

General Multilayer Model

Linear
Layer

Output

F𝑦

Method #5: Representer Point

50

Input
Cat

Dog

General Multilayer Model

Linear
Layer

Output

F𝑦

Everything Else

Method #5: Representer Point

51

Input

Multilayer Model

Output

F𝑦

Linear Model

𝐟

Final
Features

Method #5: Representer Point

51

Input

Multilayer Model

Output

F𝑦

Linear Model

𝐟

Final
Features

Treated	as	a	Fixed	Feature	Extractor

Method #5: Representer Point

51

Input

Multilayer Model

Output

F𝑦

Linear Model

𝐟

Final
Features

Treated	as	a	Fixed	Feature	Extractor Use	for	
Influence	
Estimation

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

F𝑦-.

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

F𝑦-.

𝑧-/

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

F𝑦-.

𝑧-/

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

𝐟𝐭𝐫

Final
Features

F𝑦-.

𝑧-/

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

𝐟𝐭𝐫

Final
Features

F𝑦-.

𝑧-/

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

𝐟𝐭𝐫

Final
Features

F𝑦-/

F𝑦-.

𝑧-/

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

𝐟𝐭𝐫

Final
Features

𝑧-.

F𝑦-/

F𝑦-.

𝑧-/

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

𝐟𝐭𝐫

Final
Features

𝑧-.

F𝑦-/

F𝑦-.

𝑧-/

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

𝐟𝐭𝐫

Final
Features

𝑧-. 𝐟𝐭𝐞

F𝑦-/

F𝑦-.

𝑧-/

Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any
L0 regularized linear model (𝜆 > 0)

52

𝐟𝐭𝐫

Final
Features

𝑧-. 𝐟𝐭𝐞

F𝑦-/

F𝑦-.

𝑧-/

6𝐼34 = −
1
2𝜆𝑛

𝜕𝐿 F𝑦-/, 𝑦-/
𝜕 F𝑦-/

𝐟𝐭𝐫 ⋅ 𝐟𝐭𝐞

Representer Point Influence Estimate

Representer Point’s Complexity

Time Complexity

• Full & Incremental: 𝒪 𝑛 (Very Fast)

Storage Complexity: 𝒪(1)

Space Complexity: 𝒪(𝑛 + 𝑝)

53

Representer Point [Yeh+18]: Strengths & Weaknesses

Strengths:

+Very fast (by an order of magnitude or more)

Weaknesses:

- “Too reductive” [Yeh+22]

54

Final Thoughts:
Is Estimating Influence Statically a Good Idea?

55

Final Thoughts:
Is Estimating Influence Statically a Good Idea?
Answer: It depends.
• The more complex the model, the less static influence makes sense.

55

Final Thoughts:
Is Estimating Influence Statically a Good Idea?
Answer: It depends.
• The more complex the model, the less static influence makes sense.

Intuition: Static influence is like reading the ending of a novel and trying to understand the
whole story.
• It may be possible to get a broad idea of what happened.
• Most fine details are probably lost.

55

Final Thoughts:
Is Estimating Influence Statically a Good Idea?
Answer: It depends.
• The more complex the model, the less static influence makes sense.

Intuition: Static influence is like reading the ending of a novel and trying to understand the
whole story.
• It may be possible to get a broad idea of what happened.
• Most fine details are probably lost.

Better Way to Understand a Novel: Read from beginning to end.
• Same applies to influence analysis

55

56

Retraining
Based

Gradient
Based

Leave-
One-Out Downsampling Shapley

Value
Influence
Functions

Representer
Point

Static

TracIn HyDRA

Dynamic

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

56

Gradient
Based

TracIn HyDRA

Dynamic

Pointwise Influence
Analysis Methods

Pointwise Influence Analysis Taxonomy

Dynamic Gradient-Based
Influence Analysis

57

A Common Thread and an Alternative

All preceding methods took the same basic approach to influence:

Perturb the training set and observe the change in the model

An Orthogonal Approach
• Influence occurs during the training process
• Estimate influence by observing how training instances affect the test

loss during training

58

Visualize Measuring Influence During Training

59

Visualize Measuring Influence During Training

59

Ref. Test
Instance

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Strong
Positive
Influence

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Strong
Positive
Influence

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Strong
Positive
Influence

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Strong
Positive
Influence

Strong
Negative
Influence

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Strong
Positive
Influence

Strong
Negative
Influence

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Strong
Positive
Influence

Strong
Negative
Influence

Visualize Measuring Influence During Training

59

Ref. Test
Instance

For simplicity, assume
gradient descent with
a batch size of 1 and

no momentum

Training Iteration (𝑡)

Test
Loss

Strong
Positive
Influence

Strong
Negative
Influence

Method #6: TracIn [Pru+20]

Estimates influence during training via the preceding basic idea.
• Problem: Singleton batches and no momentum is too slow

TracIn Influence Estimator:
• Non-Singleton: Analyze batch gradients to determine which batch

instances caused the test loss change

• Implementation: Simple. Just take a series of gradient dot products.

60

When Your Biggest Strength
is Your Biggest Weakness
By retracing gradient descent, TracIn can detect influential
training instances overlooked by other (static) methods.
• TracIn generally outperforms other influence estimators

The Big Weakness:
• TracIn retraces gradient descent for every test instance

• Very expensive computationally

62

TracIn’s Complexity

Time Complexity
• Full & Incremental: 𝒪 𝑛𝑝𝑇
• Note the dependence on iteration count 𝑇 for both the full and
incremental complexity

Storage Complexity: 𝒪(𝑝𝑇) (Huge)

Space Complexity: 𝒪(𝑛 + 𝑝)
63

TracIn: Strengths & Weaknesses

Strengths:

+Better identifies influential instances

+ Simple theory and implementation (e.g., no HVP)

Weaknesses:

- Computationally expensive

- High storage cost

64

Method #7: HyDRA [Che+21]

•
′

65

Method #7: HyDRA [Che+21]

•
′

65

Method #7: HyDRA [Che+21]

• Recall: Influence functions efficiently estimates the LOO influence by
assuming model convexity

•
′

65

Method #7: HyDRA [Che+21]

• Recall: Influence functions efficiently estimates the LOO influence by
assuming model convexity

• HyDRA estimates the LOO influence but does not assume convexity
•

′

65

Method #7: HyDRA [Che+21]

• Recall: Influence functions efficiently estimates the LOO influence by assuming
model convexity

• HyDRA estimates the LOO influence but does not assume convexity
• Impact: Each training set change causes the model to converge to a very different risk

minimizer 𝜃′

65

Method #7: HyDRA [Che+21]

• Recall: Influence functions efficiently estimates the LOO influence by assuming model
convexity

• HyDRA estimates the LOO influence but does not assume convexity
• Impact: Each training set change causes the model to converge to a very different risk minimizer 𝜃′

• Estimating this alternate minimizer requires retracing all of training

65

Method #7: HyDRA [Che+21]

• Recall: Influence functions efficiently estimates the LOO influence by assuming
model convexity

• HyDRA estimates the LOO influence but does not assume convexity
• Impact: Each training set change causes the model to converge to a very different risk

minimizer 𝜃′

• Estimating this alternate minimizer requires retracing all of training
• Explaining the mechanics of HyDRA’s hypergradient tracing is beyond the scope of this

talk. See our full paper for details.

65

Big Picture Summary:
Dynamic Gradient-Based Influence Estimators

66

Big Picture Summary:
Dynamic Gradient-Based Influence Estimators

Two Takeaways:

• Best performing

• Slowest

66

Applications of
Influence Analysis

67

Data Cleaning
“Unhelpful” Training Instance: Any instance that causes the model’s overall performance to
(significantly) decline
• Potential Causes: Mislabeling, noisy features, etc.

68

Data Cleaning
“Unhelpful” Training Instance: Any instance that causes the model’s overall performance to
(significantly) decline
• Potential Causes: Mislabeling, noisy features, etc.

Data Cleaning’s Basic Procedure:
1. Train a model

2. Use influence analysis to identify unhelpful training instances

3. Remove unhelpful instances from the training set and retrain the model

68

Data Cleaning
“Unhelpful” Training Instance: Any instance that causes the model’s overall performance to
(significantly) decline
• Potential Causes: Mislabeling, noisy features, etc.

Data Cleaning’s Basic Procedure:
1. Train a model

2. Use influence analysis to identify unhelpful training instances

3. Remove unhelpful instances from the training set and retrain the model

Methods to identify unhelpful instances:
• Identify instances that are consistently negatively influential on a held-out set

• Identify memorized training instances

68

Memorization is a Bug…

Memorization is the influence of a training instance on itself
• Intuition: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?
• Conventional Wisdom: Yes

69

Memorization is a Bug…

Memorization is the influence of a training instance on itself
• Intuition: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?
• Conventional Wisdom: Yes

It has recently been shown that the right answer is “It’s complicated”
• Downsampling was used to show that eliminating training set memorization doubles the top-1

ImageNet error. [FZ20]

69

Memorization is a Bug…

Memorization is the influence of a training instance on itself
• Intuition: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?
• Conventional Wisdom: Yes

It has recently been shown that the right answer is “It’s complicated”
• Downsampling was used to show that eliminating training set memorization doubles the top-1

ImageNet error. [FZ20]

69

but also a Feature

Adversarial Attacks and Defenses

Training-Set Attack: Adversary inserts malicious instances into the training set to
manipulate model behavior.

To change a prediction, the adversarial instances must influence the model.
• Takeaway #1: Crafting a training-set attack reduces to creating influential training instances.

70

Adversarial Attacks and Defenses

Training-Set Attack: Adversary inserts malicious instances into the training set to
manipulate model behavior.

To change a prediction, the adversarial instances must influence the model.
• Takeaway #1: Crafting a training-set attack reduces to creating influential training instances.

Attackers are often limited in the number of adversarial instances they can insert into the
training set.
• Takeaway #2: Detecting adversarial attacks reduces to identifying test examples with a few

exceptionally influential training instances.

70

Future Research Directions

71

Group Influence over Pointwise Influence

Most influence analysis research focuses on pointwise effects

Most predictions are moderately affected by multiple training instances
• Group influence effects are often supermodular

• Intuition: A training instance deletion has a larger effect if the instance is one-of-a-kind versus if it has
1,000 copies

72

Group Influence over Pointwise Influence

Most influence analysis research focuses on pointwise effects

Most predictions are moderately affected by multiple training instances
• Group influence effects are often supermodular

• Intuition: A training instance deletion has a larger effect if the instance is one-of-a-kind versus if it has
1,000 copies

Takeaway #1: Pointwise influence is often too reductive

72

Group Influence over Pointwise Influence

Most influence analysis research focuses on pointwise effects

Most predictions are moderately affected by multiple training instances
• Group influence effects are often supermodular

• Intuition: A training instance deletion has a larger effect if the instance is one-of-a-kind versus if it has
1,000 copies

Takeaway #1: Pointwise influence is often too reductive

Takeaway #2: Future influence analysis research should focus on group effects

72

Improve Influence Estimation’s Scalability

Influence analysis is slow
• Analyzing the pointwise influence w.r.t. a single test instance can take hours

• Influence analysis’ computational overhead restricts its usage

To be practical, influence analysis must be faster by at least an order of magnitude

73

Improve Influence Estimation’s Scalability

Influence analysis is slow
• Analyzing the pointwise influence w.r.t. a single test instance can take hours

• Influence analysis’ computational overhead restricts its usage

To be practical, influence analysis must be faster by at least an order of magnitude

How can we get there?
• Better heuristic methods

• Surrogate model analysis (e.g., pruned/efficient models)

• Specialization of influence analysis by domain/data modality (e.g., text)

73

Improve Influence Estimation’s Scalability

Influence analysis is slow
• Analyzing the pointwise influence w.r.t. a single test instance can take hours

• Influence analysis’ computational overhead restricts its usage

To be practical, influence analysis must be faster by at least an order of magnitude

How can we get there?
• Better heuristic methods

• Surrogate model analysis (e.g., pruned/efficient models)

• Specialization of influence analysis by domain/data modality (e.g., text)

Understand the Risk: Increased inaccuracy + introduction of new “blind spots”

73

Certified Influence Estimation

Existing influence estimators provide no accuracy guarantees.

Many domains require that limited training-set changes do not affect a
model’s decision.
• Example: Certified defenses against training-set attacks.

• Influence estimation cannot currently be applied in these settings.

74

Certified Influence Estimation

Existing influence estimators provide no accuracy guarantees.

Many domains require that limited training-set changes do not affect a
model’s decision.
• Example: Certified defenses against training-set attacks.

• Influence estimation cannot currently be applied in these settings.

Takeaway: Certified influence estimation is sorely needed

74

Final Thoughts

75

Final Thoughts
Numerous approaches exist to define and measure influence
• This is a feature – not a bug

ML practitioners need to understand the trade-offs/limitations of the various methods to
select the best one for their application
• Our full paper provides more details to inform this choice

Significant future work remains to make influence analysis more practical and more useable
• Existing applications demonstrate influence analysis’ potential despite its limitations

76

For a curated list of resources related to training-set influence
analysis, see our GitHub repo:

https://github.com/ZaydH/influence_analysis_papers

77

https://github.com/ZaydH/influence_analysis_papers

References
[Bae+22] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger Grosse. “If Influence Functions are the Answer, Then What is the Question?” 2022. arXiv: 2209.05364.

[BPF21] Samyadeep Basu, Phil Pope, and Soheil Feizi. “Influence Functions in Deep Learning Are Fragile”. ICLR. 2021.

[BR92] Avrim L. Blum and Ronald L. Rivest. “Training a 3-node neural network is NP-complete”. In: Neural Networks 5.1 (1992), pp. 117–127. ISSN: 0893-6080.

[Che+21] Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. “HyDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks”. AAAI. 2021.

[CW82] R. Dennis Cook and Sanford Weisberg. Residuals and Influence in Regression. New York: Chapman and Hall, 1982.

[FZ20] Vitaly Feldman and Chiyuan Zhang. “What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation”. NeurIPS. 2020.

[GZ19] Amirata Ghorbani and James Zou. “Data Shapley: Equitable Valuation of Data for Machine Learning”. ICML. 2019.

[Ham74] Frank R. Hampel. “The Influence Curve and its Role in Robust Estimation”. Journal of the American Statistical Association 69.346 (1974), pp. 383–393.

[Jae72] Louis A. Jaeckel. The Infinitesimal Jackknife. Tech. rep. Bell Laboratories, 1972.

[KL17] Pang Wei Koh and Percy Liang. “Understanding Black-box Predictions via Influence Functions”. ICML. 2017.

[Pru+20] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. “Estimating Training Data Influence by Tracing Gradient Descent”. NeurIPS. 2020.

[Sha53] Lloyd S Shapley. “A Value for n-Person Games”. Contributions to the Theory of Games II. Princeton, NJ USA: Princeton University Press, 1953, pp. 307–317.

[SHS01] Bernhard Scholkopf, Ralf Herbrich, and Alex J. Smola. “A Generalized Representer Theorem”. COLT/EuroCOLT. 2001.

[Yeh+18] Chih-Kuan Yeh, Joon Sik Kim, Ian E.H. Yen, and Pradeep Ravikumar. “Representer Point Selection for Explaining Deep Neural Networks”. NeurIPS. 2018.

[Zha+17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. “Understanding Deep Learning Requires Rethinking Generalization”. ICLR. 2017.

[ZZ22] Rui Zhang and Shihua Zhang. “Rethinking Influence Functions of Neural Networks in the Over-Parameterized Regime”. AAAI. 2022.
78

