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Building a Common Intuition – Training Data

• Exactly how and what a neural network learns from training set 
is poorly understood

• Deep models are functionally black boxes

• Generally unclear why a deep model made a specific prediction

• The training set is foundational to every ML model but is too 
often overlooked
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Do You Know Your Training Data?

Consider the last machine learning model you trained. Can you answer basic 
questions about your training data?
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• Has the training data been manipulated by a malicious actor?
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Do You Know Your Training Data?

Consider the last machine learning model you trained. Can you answer basic 
questions about your training data?

• Is model prediction well-supported by the training data?

• Which training instances made a model prediction better? Which made it worse?

• Has the training data been manipulated by a malicious actor?

Models can learn meaningful features from the training data but also spurious features
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Question: How do we identify and 
debug training set issues?



Not Knowing Our Training Data is Bad…

Claim: Our inability to answer basic questions about our training 
set is bad for many reasons including:

• Prevents fixing model issues
• Why is your model learning spurious features from good data?

• Prevents fixing training-set issues
• Is your model issue actually a training-set issue?

7



A Single Core Question

What is the effect of each training instance on the model?
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What is the effect of each training instance on the model?

“Effect” depends on a specific perspective.  It can be:
• With respect to a single prediction or all predictions
• Relative or absolute
• Beneficial or harmful
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A Single Core Question

What is the effect of each training instance on the model?

“Effect” depends on a specific perspective.  It can be:
• With respect to a single prediction or all predictions
• Relative or absolute
• Beneficial or harmful

Training-Set Influence Analysis: Apportions credit (and blame) for specific 
model behaviors to training instances
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What is Data’s “Effect” Anyway?

There are many different (even orthogonal) definitions of 
training-set influence.

• This talk focuses on the simplest and most common perspective on 
training-set influence
• See our full paper for additional perspectives on training-set influence
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Pointwise Training-Set Influence
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Pointwise Training-Set Influence

Quantifies how a single training instance affected trained model 𝑓’s 
prediction on a single (reference) test instance
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Pointwise Training-Set Influence

Quantifies how a single training instance affected trained model 𝑓’s 
prediction on a single (reference) test instance

Common metrics used to quantify a training instance’s pointwise 
influence:
• Accuracy
• Test loss
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Pointwise Training-Set Influence

Quantifies how a single training Better test prediction
ed model 𝑓’s prediction on a single (reference) test instance

Common metrics used to quantify a training instance’s pointwise influence:
• Accuracy
• Test loss

Convention: Positive influence ⟹ Better test prediction
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Training-Set Influence Estimation
Measuring training-set influence exactly can be NP-complete.

To make influence analysis more tractable, influence estimators are used in practice.
• Many influence estimators have been proposed

• Each estimator relies on different assumptions and formulations
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Training-Set Influence Estimation
Measuring training-set influence exactly can be NP-complete.

To make influence analysis more tractable, influence estimators are used in practice.
• Many influence estimators have been proposed

• Each estimator relies on different assumptions and formulations

This talk reviews the most impactful pointwise influence analysis methods.
• High-level description

• Time, storage, and space complexities

• Strengths and weaknesses
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Retraining-Based Influence: An Intuition

Instances only affect a model if they are part of the training set

Train two models: 
1. One with the instance in the training set
2. Retrain without that instance

Influence: The difference in the two models’ predictions

14



Retraining-Based Influence Analysis

The next set of slides reviews three retraining-based influence analysis 
methods.
• Leave-One-Out
• Downsampling
• Shapley Value

Each method builds on mitigates some of the weaknesses of the 
preceding method.

15
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Leave-One-Out Influence’s Complexity
Time Complexity

• Full: 𝒪 𝑛𝑇
• Train 𝑛 + 1 models with 𝑇 iterations per model

• Amortizable & parallelizable

• Incremental: 𝒪(𝑛)

Storage Complexity: 𝒪(𝑛𝑝)
• Store the 𝑛 + 1 models
• 𝑝 – Size of a model

Space Complexity: 𝒪(𝑛 + 𝑝)
• 𝑛 – Influence value for each of the 𝑛 training instances

19



Leave-One-Out: Strengths & Weaknesses
Strengths:
+ Intuitive and human interpretable
+Fast incremental time complexity – just 𝑛 forward passes
+Most influence estimators based on LOO

Weaknesses:
- Large upfront cost 
- Complexity dependent on training set size (𝑛)
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Leave-One-Out: Strengths & Weaknesses
Strengths:
+ Intuitive and human interpretable
+Fast incremental time complexity – just 𝑛 forward passes
+Most influence estimators based on LOO

Weaknesses:
- Large upfront cost 
- Complexity dependent on training set size (𝑛)

20
Question: Can we remove LOO’s dependence on 𝑛?
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Method #2: Downsampling [FZ20]

Key Feature: Much faster version of LOO

• random training subsets of size 0.5𝑛

• Train 𝐾 models each using a different training subset

• Use 𝐾 model predictions to estimate LOO

• In Practice: 𝐾 ≪ 𝑛
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Method #2: Downsampling [FZ20]

𝑛𝑛
𝑛𝑛
.5𝑛𝑛

Key Feature: Much faster version of LOO

• Basic Procedure:
• Train 𝐾 models each using a different training subset

• Use 𝐾 model predictions to estimate LOO

• In Practice: 𝐾 ≪ 𝑛
• In Practice: 𝐾 ≪ 𝑛
• In Practice: 𝐾 ≪ 𝑛
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Downsampling’s Complexity

Time Complexity

• Full: 𝒪 𝐾𝑇

• Incremental: 𝒪(𝐾)

Storage Complexity: 𝒪(𝐾𝑝)

Space Complexity: 𝒪(𝑛 + 𝑝)
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Downsampling: Strengths & Weaknesses
Strengths:
Estimates the expected LOO influence 

Considers effect of training’s rando     

25
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Method #3: Retraining + Game Theory

Cooperative Game Theory: Attempts to predict how players in a multiagent 
game cooperate to achieve shared objectives.

A training set can be viewed as a coalition of 𝑛 players

• Groups of training instances cooperate during model training to improve 
the model’s performance

• Each group of training instances has a “value” – positive or negative 

27



Method #3: Shapley Value [GZ19]

Proposed originally [Sha53] in the context of cooperative game 
theory

Shapley value influence: Each training instance’s average leave-
out-influence across all possible training subsets
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Method #3: Shapley Value [GZ19]

Proposed originally [Sha53] in the context of cooperative game 
theory

Shapley value influence: Each training instance’s average leave-
out-influence across all possible training subsets

• Question: How many possible training subsets are there?
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Relating Leave-One-Out & Shapley Value

Recall the Leave-One-Out Influence

𝐼!"" = Acc#$%& − Acc#/"

• Acc#$%& is w.r.t. the full training set (size 𝑛)

• Acc#/": Considers a single training subset (size 𝑛 − 1)

29



Relating Leave-One-Out & Shapley Value

Shapley Value Influence Basic Procedure:

• Train a model on each of the 2- training subsets

• Calculate the LOO influence across 2-./ LOO model pairs

• Average the 2-./ LOO influences

30
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Exponential time
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Relating Leave-One-Out & Shapley Value

Shapley Value Influence Basic Procedure:

• Train a model on each of the 2- training subsets

• Calculate the LOO influence across 2-./ LOO model pairs

• Average the 2-./ LOO influences

Exponential time

• Provably hard: #P Complete
30



Shapley Value’s Complexity

Time Complexity
• Full: 𝒪 2, 𝑇

• Incremental: 𝒪(2,)

Storage Complexity: 𝒪(2>𝑝)

Space Complexity: 𝒪(𝑛 + 𝑝)

Significant follow-on work has focused on 
heuristically speeding up Shapley value estimation.

32



Shapley Value: Strengths & Weaknesses

Strengths:

+Extensively studied and well motivated theoretically

+Detects “difficult” test instances that other retraining-based 
methods may miss

Weaknesses:

- Catastrophic execution time

33
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Big Picture Summary:
Retraining-Based Influence Analysis
Strengths:

+Simple. Works for any model class with few assumptions

+ Intuitive and human interpretable

+Low incremental time complexity

Weaknesses:

- Huge storage and upfront time complexities
34



Multiple retrainings are expensive.
• For large models, repeated retraining is even prohibitive.
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Multiple retrainings are expensive.
• For large models, repeated retraining is even prohibitive.

Question: Can training-set influence be accurately 
measured without any model retraining?

35
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Why Use Gradients to Estimate Influence?

Training instances only affect the model through gradients

• Intuition: Training gradients have everything we need to measure influence

Key Themes for Gradient-Based Influence Estimation:

• No model retraining

• Model and loss assumed differentiable 

• Rely on Taylor-series expansions
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Partitioning Gradient-Based Influence Estimators

Static Estimators: Estimate influence using only the final model parameters
• Influence Functions [KL17]

• Representer Point [Yeh+18]

Dynamic Estimators: Reconstruct the training set’s influence by studying all 
model parameters across all training iterations
• TracIn [Pru+20]

• HyDRA [Che+21]
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How Can Static Influence Estimation Actually Work?

The final model parameters contain very limited information

• Much less information than is used by retraining-based as well as dynamic 
gradient-based methods

Rule of Thumb: Static influence estimators are simpler than dynamic ones
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How Can Static Influence Estimation Actually Work?

The final model parameters contain very limited information

• Much less information than is used by retraining-based as well as dynamic 
gradient-based methods

Rule of Thumb: Static influence estimators are simpler than dynamic ones

No Free Lunch: Static estimators make very strong assumptions that do not 
hold for deep models
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Method #4: Influence Functions [KL17]

Best-known and most well-studied influence estimator
• Based on influence functions from robust statistics [Jae72, Ham74] 

Estimates the Leave-One-Influence:
𝐼!"" = Loss#/" − Loss#%&' ≈ *𝐼()

Very Strong Assumption: Strict convexity and stationarity
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Method #4: Influence Functions [KL17]

Best-known and most well-studied influence estimator
• Based on influence functions from robust statistics [Jae72, Ham74] 

Estimates the Leave-One-Influence:
𝐼!"" = Loss#/" − Loss#%&' ≈ *𝐼()

Very Strong Assumption: Strict convexity and stationarity
+Enables a closed-form LOO influence estimate

42
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Formalizing Influence Functions

We need to extend our nomenclature a bit

• 𝑓: Neural network

• 𝜃: Final model parameters

• 𝐿: Loss function

• 𝑧7: Training instance

• 𝑧%8: Test instance
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LOO estimate of training instance 𝑧" influence on test instance 𝑧#$

1𝐼56 ≔
1
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∇9𝐿 𝑧7; 𝜃 𝐻9./ ∇9𝐿 𝑧%8; 𝜃
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Influence Functions & Risk Hessians
Calculating 𝐻-./ exactly is intractable

• Time Complexity: 𝒪 𝑛𝑝0 + 𝑝1

• Space: 𝒪(𝑝0)

∇-𝐿 𝑧23; 𝜃
• Still slow - 𝑂(𝑛𝑝) time complexity
• Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22]
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Influence Functions & Risk Hessians

𝑛𝑛𝑝𝑝)	time complexity
1 𝐻 𝜃 −1		∇	𝜃 ∇	∇	𝜃 𝜃𝜃 ∇	𝜃 𝐿𝐿 𝑧 te	;𝜃 𝑧 te	𝑧𝑧 𝑧 te	te	𝑧 te	;𝜃𝜃 𝑧 te	;𝜃

Calculating 𝐻A
BC exactly is intractable

• Time Complexity: 𝒪 𝑛𝑝D + 𝑝E

• Space: 𝒪(𝑝D)

• Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22] Still 
slow - 𝑂(𝑛𝑝) time complexity
• Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22]
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Influence Functions’ Complexity

Time Complexity

• Full & Incremental: 𝒪 𝑛𝑝

Storage Complexity: 𝒪(1)

Space Complexity: 𝒪(𝑛 + 𝑝)
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Influence Functions: Strengths & Weaknesses

Strengths:
+ Lower upfront time complexity than retraining-based methods

+ Most well-studied gradient-based influence method

Weaknesses:
- HVP estimation is inaccurate, fragile, and numerically unstable

- Relies on assumptions that do not hold for deep models

- No incremental time complexity gains (slow)
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Method #5: Representer Point [Yeh+18]

• Key Feature: Fastest influence analysis method

• Strong Assumptions: Linearity and stationarity

• Estimates influence using a linearized representation of the deep 
model.
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Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any 
L0 regularized linear model (𝜆 > 0) 
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Representer Point Theorem & Influence
Scholkopf et al.’s [SHS01] representer theorem specifies how to calculate influence over any 
L0 regularized linear model (𝜆 > 0) 
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Representer Point’s Complexity

Time Complexity

• Full & Incremental: 𝒪 𝑛 (Very Fast)

Storage Complexity: 𝒪(1)

Space Complexity: 𝒪(𝑛 + 𝑝)
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Representer Point [Yeh+18]: Strengths & Weaknesses

Strengths:

+Very fast (by an order of magnitude or more)

Weaknesses:

- “Too reductive” [Yeh+22]
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Final Thoughts:
Is Estimating Influence Statically a Good Idea?
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Final Thoughts:
Is Estimating Influence Statically a Good Idea?
Answer: It depends.
• The more complex the model, the less static influence makes sense.

Intuition: Static influence is like reading the ending of a novel and trying to understand the 
whole story.
• It may be possible to get a broad idea of what happened. 
• Most fine details are probably lost.

Better Way to Understand a Novel: Read from beginning to end.
• Same applies to influence analysis
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Dynamic Gradient-Based
Influence Analysis
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A Common Thread and an Alternative

All preceding methods took the same basic approach to influence:

Perturb the training set and observe the change in the model

An Orthogonal Approach
• Influence occurs during the training process
• Estimate influence by observing how training instances affect the test 

loss during training
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Method #6: TracIn [Pru+20]

Estimates influence during training via the preceding basic idea.
• Problem: Singleton batches and no momentum is too slow

TracIn Influence Estimator:
• Non-Singleton: Analyze batch gradients to determine which batch 

instances caused the test loss change

• Implementation: Simple. Just take a series of gradient dot products.
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When Your Biggest Strength
is Your Biggest Weakness
By retracing gradient descent, TracIn can detect influential 
training instances overlooked by other (static) methods.
• TracIn generally outperforms other influence estimators

The Big Weakness:
• TracIn retraces gradient descent for every test instance

• Very expensive computationally
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TracIn’s Complexity

Time Complexity
• Full & Incremental: 𝒪 𝑛𝑝𝑇
• Note the dependence on iteration count 𝑇 for both the full and 
incremental complexity

Storage Complexity: 𝒪(𝑝𝑇) (Huge) 

Space Complexity: 𝒪(𝑛 + 𝑝)
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TracIn: Strengths & Weaknesses

Strengths:

+Better identifies influential instances

+ Simple theory and implementation (e.g., no HVP)

Weaknesses:

- Computationally expensive

- High storage cost
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Method #7: HyDRA [Che+21]

•
′
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Method #7: HyDRA [Che+21]

• Recall: Influence functions efficiently estimates the LOO influence by assuming 
model convexity

• HyDRA estimates the LOO influence but does not assume convexity
• Impact: Each training set change causes the model to converge to a very different risk 

minimizer 𝜃′
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• Recall: Influence functions efficiently estimates the LOO influence by assuming model 
convexity

• HyDRA estimates the LOO influence but does not assume convexity
• Impact: Each training set change causes the model to converge to a very different risk minimizer 𝜃′

• Estimating this alternate minimizer requires retracing all of training
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Method #7: HyDRA [Che+21]

• Recall: Influence functions efficiently estimates the LOO influence by assuming 
model convexity

• HyDRA estimates the LOO influence but does not assume convexity
• Impact: Each training set change causes the model to converge to a very different risk 

minimizer 𝜃′

• Estimating this alternate minimizer requires retracing all of training
• Explaining the mechanics of HyDRA’s hypergradient tracing is beyond the scope of this 

talk.  See our full paper for details.
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Big Picture Summary:
Dynamic Gradient-Based Influence Estimators
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Big Picture Summary:
Dynamic Gradient-Based Influence Estimators

Two Takeaways:

• Best performing

• Slowest
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Applications of 
Influence Analysis
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Data Cleaning
“Unhelpful” Training Instance: Any instance that causes the model’s overall performance to 
(significantly) decline
• Potential Causes: Mislabeling, noisy features, etc.
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Data Cleaning
“Unhelpful” Training Instance: Any instance that causes the model’s overall performance to 
(significantly) decline
• Potential Causes: Mislabeling, noisy features, etc.

Data Cleaning’s Basic Procedure: 
1. Train a model

2. Use influence analysis to identify unhelpful training instances

3. Remove unhelpful instances from the training set and retrain the model

Methods to identify unhelpful instances:
• Identify instances that are consistently negatively influential on a held-out set

• Identify memorized training instances
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Memorization is a Bug…

Memorization is the influence of a training instance on itself
• Intuition: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?
• Conventional Wisdom: Yes

69



Memorization is a Bug…

Memorization is the influence of a training instance on itself
• Intuition: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?
• Conventional Wisdom: Yes

It has recently been shown that the right answer is “It’s complicated”
• Downsampling was used to show that eliminating training set memorization doubles the top-1 

ImageNet error. [FZ20]

69



Memorization is a Bug…

Memorization is the influence of a training instance on itself
• Intuition: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?
• Conventional Wisdom: Yes

It has recently been shown that the right answer is “It’s complicated”
• Downsampling was used to show that eliminating training set memorization doubles the top-1 

ImageNet error. [FZ20]

69

but also a Feature



Adversarial Attacks and Defenses

Training-Set Attack: Adversary inserts malicious instances into the training set to 
manipulate model behavior.

To change a prediction, the adversarial instances must influence the model.
• Takeaway #1: Crafting a training-set attack reduces to creating influential training instances.
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Adversarial Attacks and Defenses

Training-Set Attack: Adversary inserts malicious instances into the training set to 
manipulate model behavior.

To change a prediction, the adversarial instances must influence the model.
• Takeaway #1: Crafting a training-set attack reduces to creating influential training instances.

Attackers are often limited in the number of adversarial instances they can insert into the 
training set.
• Takeaway #2: Detecting adversarial attacks reduces to identifying test examples with a few 

exceptionally influential training instances.

70



Future Research Directions

71



Group Influence over Pointwise Influence

Most influence analysis research focuses on pointwise effects

Most predictions are moderately affected by multiple training instances
• Group influence effects are often supermodular

• Intuition: A training instance deletion has a larger effect if the instance is one-of-a-kind versus if it has 
1,000 copies
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Group Influence over Pointwise Influence

Most influence analysis research focuses on pointwise effects

Most predictions are moderately affected by multiple training instances
• Group influence effects are often supermodular

• Intuition: A training instance deletion has a larger effect if the instance is one-of-a-kind versus if it has 
1,000 copies

Takeaway #1: Pointwise influence is often too reductive

Takeaway #2: Future influence analysis research should focus on group effects
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Improve Influence Estimation’s Scalability

Influence analysis is slow
• Analyzing the pointwise influence w.r.t. a single test instance can take hours

• Influence analysis’ computational overhead restricts its usage

To be practical, influence analysis must be faster by at least an order of magnitude

73



Improve Influence Estimation’s Scalability

Influence analysis is slow
• Analyzing the pointwise influence w.r.t. a single test instance can take hours

• Influence analysis’ computational overhead restricts its usage

To be practical, influence analysis must be faster by at least an order of magnitude

How can we get there?
• Better heuristic methods

• Surrogate model analysis (e.g., pruned/efficient models)

• Specialization of influence analysis by domain/data modality (e.g., text)

73



Improve Influence Estimation’s Scalability

Influence analysis is slow
• Analyzing the pointwise influence w.r.t. a single test instance can take hours

• Influence analysis’ computational overhead restricts its usage

To be practical, influence analysis must be faster by at least an order of magnitude

How can we get there?
• Better heuristic methods

• Surrogate model analysis (e.g., pruned/efficient models)

• Specialization of influence analysis by domain/data modality (e.g., text)

Understand the Risk: Increased inaccuracy + introduction of new “blind spots”

73



Certified Influence Estimation

Existing influence estimators provide no accuracy guarantees.

Many domains require that limited training-set changes do not affect a 
model’s decision.
• Example: Certified defenses against training-set attacks.

• Influence estimation cannot currently be applied in these settings.
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Certified Influence Estimation

Existing influence estimators provide no accuracy guarantees.

Many domains require that limited training-set changes do not affect a 
model’s decision.
• Example: Certified defenses against training-set attacks.

• Influence estimation cannot currently be applied in these settings.

Takeaway: Certified influence estimation is sorely needed
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Final Thoughts
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Final Thoughts
Numerous approaches exist to define and measure influence
• This is a feature – not a bug

ML practitioners need to understand the trade-offs/limitations of the various methods to 
select the best one for their application
• Our full paper provides more details to inform this choice

Significant future work remains to make influence analysis more practical and more useable
• Existing applications demonstrate influence analysis’ potential despite its limitations
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For a curated list of resources related to training-set influence 
analysis, see our GitHub repo:

https://github.com/ZaydH/influence_analysis_papers
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