Training-Set Influence Analysis and Estimation

Zayd Hammoudeh University of Oregon

October 14, 2022

A Running Example...

Classifier

A Running Example...

Binary Classification

Cat

Dog

Classifier

A Running Example...

Binary Classification

50/50 chance prediction is correct/wrong

Training Set (Size n)

Ref. Test Instance

Classifier

Training Set (Size n)

Ref. Test Instance

Building a Common Intuition – Training Data

- Exactly <u>how</u> and <u>what</u> a neural network learns from training set is poorly understood
 - Deep models are functionally **black boxes**
 - Generally unclear why a deep model made a specific prediction
- The training set is foundational to every ML model but is too <u>often overlooked</u>

Do You Know Your Training Data?

Consider the last machine learning model <u>you</u> trained. *Can you answer basic questions about your training data?*

Do You Know Your Training Data?

Consider the last machine learning model <u>you</u> trained. *Can you answer basic questions about your training data?*

- Is model prediction well-supported by the training data?
- Which training instances made a model prediction better? Which made it worse?
- Has the training data been manipulated by a malicious actor?

Do You Know Your Training Data?

Consider the last machine learning model <u>you</u> trained. *Can you answer basic questions about your training data?*

- Is model prediction well-supported by the training data?
- Which training instances made a model prediction better? Which made it worse?
- Has the training data been manipulated by a malicious actor?

Models can learn **meaningful features** from the training data but also **spurious features**

Training Set

Random Training Set

<u>Random</u> Training Set

Train Instance

Random Training Set

 $\underbrace{\underline{\text{Train Instance}}}_{\text{Input}} \xrightarrow{\text{Input}} f \xrightarrow{\text{Output}} Correct$ $\underbrace{f}_{\text{Random-Label}}$ $\underbrace{\text{Trained}}_{\text{Classifier}}$

6

<u>Random</u> Training Set

Train Instance

Random Training Set

 $\underline{\mathrm{Train}} \ \mathbf{Instance}$

6

<u>Random</u> Training Set

Train Instance

Train Instance

Test Instance

Test Instance

f Random-Label Trained Classifier

Not Knowing Our Training Data is Bad...

Claim: Our inability to answer basic questions about our training set is bad for **many** reasons including:

- Prevents fixing <u>model</u> issues
 - Why is your model learning spurious features from good data?

- Prevents fixing <u>training-set</u> issues
 - Is your model issue actually a training-set issue?
A Single Core Question

What is the effect of each training instance on the model?

A Single Core Question

What is the effect of each training instance on the model?

"Effect" depends on a specific perspective. It can be:

- With respect to a single prediction or all predictions
- Relative or absolute
- Beneficial or harmful

A Single Core Question

What is the effect of each training instance on the model?

"Effect" depends on a specific perspective. It can be:

- With respect to a single prediction or all predictions
- Relative or absolute
- Beneficial or harmful

Training-Set Influence Analysis: Apportions credit (and blame) for specific model behaviors to training instances

What is Data's "Effect" Anyway?

There are many different (even orthogonal) definitions of training-set influence.

- This talk focuses on the **simplest and most common** perspective on training-set influence
 - See our full paper for additional perspectives on training-set influence

Quantifies how a single training instance affected trained model f's prediction on a single (reference) test instance

Quantifies how a single training instance affected trained model f's prediction on a single (reference) test instance

Common metrics used to quantify a training instance's pointwise influence:

- Accuracy
- Test loss

Quantifies how a single training Better test prediction ed model f's prediction on a single (reference) test instance

Common metrics used to quantify a training instance's pointwise influence:

- Accuracy
- Test loss

Convention: Positive influence \Rightarrow Better test prediction

Training-Set Influence Estimation

Measuring training-set influence *exactly* can be NP-complete.

To make influence analysis more tractable, **influence estimators** are used in practice.

- Many influence estimators have been proposed
- Each estimator relies on different assumptions and formulations

Training-Set Influence Estimation

Measuring training-set influence *exactly* can be NP-complete.

To make influence analysis more tractable, **influence estimators** are used in practice.

- Many influence estimators have been proposed
- Each estimator relies on different assumptions and formulations

This talk reviews the most impactful **pointwise influence analysis** methods.

- High-level description
- Time, storage, and space complexities
- Strengths and weaknesses

Pointwise Influence Analysis Taxonomy

Pointwise Influence Analysis Taxonomy

Retraining-Based Influence Analysis

Retraining-Based Influence: An Intuition

Instances only affect a model if they are part of the training set

Train two models:

- 1. One with the instance in the training set $\frac{1}{2}$
- 2. Retrain <u>without</u> that instance

Influence: The difference in the two models' predictions

Retraining-Based Influence Analysis

The next set of slides reviews **three** retraining-based influence analysis methods.

- Leave-One-Out
- Downsampling
- Shapley Value

Each method builds on mitigates some of the weaknesses of the preceding method.

Pointwise Influence Analysis Taxonomy

Pointwise Influence Analysis Taxonomy

Training Set (Size n)

Training Set (Size n)

Training Set (Size n)

<u>Ref.</u> Test Instance

Training Set (Size n)

Training Set (Size n)

Training Set (Size n)

<u>Ref.</u> Test Instance

Training Set (Size n)

<u>Ref.</u> Test Instance

Training Set (Size n)

<u>Ref.</u> Test Instance

Training Set (Size n)

Training Set (Size n)

Training Set (Size n)

 $I_{\rm LOO} = {\rm Acc}_{\rm With} - {\rm Acc}_{\rm W/O}$

$$I_{\rm LOO} = Acc_{\rm With} - Acc_{\rm W/O}$$

$$I_{\rm LOO} = 1 - 1 = 0$$

Training Set (Size n)

 $I_{\rm LOO} = {\rm Acc}_{\rm With} - {\rm Acc}_{\rm W/O}$

Training Set (Size n)Image: Set (Size n)

$$I_{\rm LOO} = {\rm Acc}_{\rm With} - {\rm Acc}_{\rm W/O}$$

Training Set (Size n)Image: Set (Size n)

$$I_{\rm LOO} = {\rm Acc}_{\rm With} - {\rm Acc}_{\rm W/O}$$

Training Set (Size n)Image: Set (Size n)

$$I_{\rm LOO} = {\rm Acc}_{\rm With} - {\rm Acc}_{\rm W/O}$$

$$I_{\rm LOO} = {\rm Acc}_{\rm With} - {\rm Acc}_{\rm W/O}$$

$$I_{\rm LOO} = 1 - 1 = 0$$

Training Set (Size n)Image: Set (Size n

$$I_{\rm LOO} = {\rm Acc}_{\rm With} - {\rm Acc}_{\rm W/O}$$

$$I_{\rm LOO} = 1 - 1 = 0$$

$$I_{\rm LOO} = 1 - 0 = 1$$

Leave-One-Out Influence's Complexity

Time Complexity

- Full: $\mathcal{O}(nT)$
 - Train n + 1 models with T iterations per model
 - Amortizable & parallelizable
- Incremental: $\mathcal{O}(n)$

Storage Complexity: $\mathcal{O}(np)$

- Store the n + 1 models
- *p* Size of a model

Space Complexity: $\mathcal{O}(n+p)$

• n – Influence value for each of the n training instances
Leave-One-Out: Strengths & Weaknesses

Strengths:

- + Intuitive and human interpretable
- + Fast incremental time complexity just \boldsymbol{n} forward passes
- + Most influence estimators based on LOO

Weaknesses:

- Large upfront cost
- Complexity dependent on training set size (n)

Leave-One-Out: Strengths & Weaknesses

Strengths:

- + Intuitive and human interpretable
- + Fast incremental time complexity just \boldsymbol{n} forward passes
- + Most influence estimators based on LOO

Weaknesses:

- Large upfront cost
- Complexity dependent on training set size (n)

Question: Can we remove LOO's dependence on n?

Pointwise Influence Analysis Taxonomy

Pointwise Influence Analysis Taxonomy

Method #2: Downsampling [FZ20]

Key Feature: Much faster version of LOO

- random training subsets of size 0.5n
- Train K models each using a different training subset
- Use *K* model predictions to **estimate LOO**
- In Practice: $K \ll n$

Method #2: Downsampling [FZ20]

 $\mathcal{N}\mathcal{N}$

 $\mathcal{N}\mathcal{N}$

.5nn

Key Feature: Much faster version of LOO

• Basic Procedure:

- Train K models each using a different training subset
- Use *K* model predictions to estimate LOO
- In Practice: $K \ll n$
- In Practice: $K \ll n$
- In Practice: $K \ll n$

K = 8 Training Subsets

K = 8 Training Subsets

K = 8 Training Subsets

1		~~~	
2	<u>.</u>		
3	200		
4		C.	
5			
6		2	<u> </u>
7			
8			2

Train K Models

K = 8 Training Subsets

Train K Models

K = 8 Training Subsets

1		~~~	
2	<u>.</u>		
3	200		
4		C.	
5			
6		2	<u> </u>
7			
8			2

Train K Models

k

 f_6

 f_7

 f_8

Downsampling's Complexity

Time Complexity

- Full: $\mathcal{O}(KT)$
- Incremental: $\mathcal{O}(K)$

Storage Complexity: $\mathcal{O}(Kp)$

```
Space Complexity: \mathcal{O}(n+p)
```

Downsampling: Strengths & Weaknesses

Strengths:

Estimates the <u>expected</u> LOO influence

Considers effect of training's rando

Pointwise Influence Analysis Taxonomy

Pointwise Influence Analysis Taxonomy

Method #3: Retraining + Game Theory

Cooperative Game Theory: Attempts to predict how players in a multiagent game cooperate to achieve shared objectives.

A training set can be viewed as a **coalition** of n players

• Groups of training instances **cooperate** during model training to improve the model's performance

• Each group of training instances has a "value" – positive or negative

Method #3: Shapley Value [GZ19]

Proposed originally [Sha53] in the context of cooperative game theory

Shapley value influence: Each training instance's average leaveout-influence across <u>all possible training subsets</u>

Method #3: Shapley Value [GZ19]

Proposed originally [Sha53] in the context of cooperative game theory

Shapley value influence: Each training instance's average leaveout-influence across <u>all possible training subsets</u>

• Question: How many possible training subsets are there?

Recall the Leave-One-Out Influence

$$I_{\rm LOO} = Acc_{\rm With} - Acc_{\rm W/O}$$

- Acc_{With} is w.r.t. the full training set (size n)
- Acc_{W/O}: Considers a single training subset (size n 1)

Shapley Value Influence Basic Procedure:

- Train a model on each of the 2^n training subsets
- Calculate the LOO influence across 2^{n-1} LOO model pairs
- Average the 2^{n-1} LOO influences

Shapley Value Influence Basic Procedure:

- Train a model on each of the 2^n training subsets
- Calculate the LOO influence across 2^{n-1} LOO model pairs
- Average the 2^{n-1} LOO influences

Shapley Value Influence Basic Procedure:

- Train a model on each of the 2^n training subsets
- Calculate the LOO influence across 2^{n-1} LOO model pairs
- Average the 2^{n-1} LOO influences

Exponential time

• Provably hard: #P Complete

Shapley Value's Complexity

Time Complexity

- Full: $\mathcal{O}(2^n T)$
- Incremental: $\mathcal{O}(2^n)$

Storage Complexity: $\mathcal{O}(2^n p)$

Space Complexity: $\mathcal{O}(n+p)$

Significant follow-on work has focused on heuristically speeding up Shapley value estimation.
Shapley Value: Strengths & Weaknesses

Strengths:

+ Extensively studied and well motivated theoretically

+ Detects "difficult" test instances that other retraining-based methods may miss

Weaknesses:

- Catastrophic execution time

Big Picture Summary: Retraining-Based Influence Analysis

Big Picture Summary: Retraining-Based Influence Analysis

Strengths:

- +Simple. Works for any model class with few assumptions
- +Intuitive and human interpretable
- +Low incremental time complexity

Weaknesses:

- Huge storage and <u>upfront</u> time complexities

Multiple retrainings are **expensive**.

• For large models, repeated retraining is even prohibitive.

Multiple retrainings are **expensive**.

• For large models, repeated retraining is even prohibitive.

Question: Can training-set influence be accurately measured without any model retraining?

Pointwise Influence Analysis Taxonomy

Pointwise Influence Analysis Taxonomy

Gradient-Based Influence Analysis

Why Use Gradients to Estimate Influence?

Training instances only affect the model through gradients

• Intuition: Training gradients have everything we need to measure influence

Key Themes for Gradient-Based Influence Estimation:

- No model retraining
- Model and loss assumed differentiable
- Rely on Taylor-series expansions

Partitioning Gradient-Based Influence Estimators

Static Estimators: Estimate influence using only the final model parameters

- Influence Functions [KL17]
- Representer Point [Yeh+18]

Dynamic Estimators: Reconstruct the training set's influence by studying <u>all</u> <u>model parameters across all training iterations</u>

- **TracIn** [Pru+20]
- **HyDRA** [Che+21]

Pointwise Influence Analysis Taxonomy

Pointwise Influence Analysis Taxonomy

How Can Static Influence Estimation Actually Work?

The final model parameters contain **very limited information**

• Much less information than is used by retraining-based as well as dynamic gradient-based methods

Rule of Thumb: Static influence estimators are simpler than dynamic ones

How Can Static Influence Estimation Actually Work?

The final model parameters contain **very limited information**

• Much less information than is used by retraining-based as well as dynamic gradient-based methods

Rule of Thumb: Static influence estimators are simpler than dynamic ones

No Free Lunch: Static estimators make <u>very strong assumptions</u> that do not hold for deep models

Method #4: Influence Functions [KL17]

Best-known and most well-studied influence estimator

• Based on influence functions from robust statistics [Jae72, Ham74]

Estimates the Leave-One-Influence:

$$I_{\rm LOO} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}} \approx \hat{I}_{\rm IF}$$

Very Strong Assumption: Strict convexity and stationarity

Method #4: Influence Functions [KL17]

Best-known and most well-studied influence estimator

• Based on influence functions from robust statistics [Jae72, Ham74]

Estimates the Leave-One-Influence:

$$I_{\rm LOO} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}} \approx \hat{I}_{\rm IF}$$

Very Strong Assumption: Strict convexity and stationarity+ Enables a closed-form LOO influence estimate

 $\hat{I}_{\rm IF} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}}$

 $\hat{I}_{\rm IF} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}}$

Full Training Set: $Loss_{With} = Loss(f(\mathbf{k}; \theta), Cat)$

 $\hat{I}_{\rm IF} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}}$

Full Training Set: $Loss_{With} = Loss(f(\mathbf{k}; \theta), Cat)$

 $\hat{I}_{\rm IF} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}}$

Full Training Set: $Loss_{With} = Loss(f(\mathbf{k}; \theta), Cat)$

 $\hat{I}_{\rm IF} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}}$

Full Training Set: $Loss_{With} = Loss(f(\mathbf{k}; \theta), Cat)$

 $\hat{I}_{\rm IF} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}}$

Full Training Set: $Loss_{With} = Loss(f(\mathbf{k}; \theta), Cat)$

 $\hat{I}_{\rm IF} = {\rm Loss}_{{\rm W}/{\rm O}} - {\rm Loss}_{{\rm With}}$

Full Training Set: $Loss_{With} = Loss(f(\mathbf{k}; \theta), Cat)$

Formalizing Influence Functions

We need to extend our nomenclature a bit

- f: Neural network
- θ : Final model parameters
- L: Loss function
- z_i : Training instance
- z_{te} : Test instance

Influence Functions & Risk Hessians

- Calculating H_{θ}^{-1} exactly is intractable
- Time Complexity: $\mathcal{O}(np^2 + p^3)$
- Space: $\mathcal{O}(p^2)$

$\nabla_{\theta} L(z_{te}; \theta)$

- Still slow O(np) time complexity
- Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22]

Influence Functions & Risk Hessians

nnpp) time complexity

1 $H\theta - 1 \nabla\theta \nabla \nabla\theta \theta\theta \nabla\theta LL z te; \theta z te zz z te te z te; \theta\theta z te; \theta$ Calculating H_{θ}^{-1} exactly is intractable

- Time Complexity: $\mathcal{O}(np^2 + p^3)$
- Space: $\mathcal{O}(p^2)$
- Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22] Still slow O(np) time complexity
- Very inaccurate and unstable in deep models [BPF21,ZZ22,Bae+22]

Influence Functions' Complexity

Time Complexity

• Full & Incremental: $\mathcal{O}(np)$

Storage Complexity: $\mathcal{O}(1)$

Space Complexity: O(n + p)

Influence Functions: Strengths & Weaknesses

Strengths:

- + Lower upfront time complexity than retraining-based methods
- + Most well-studied gradient-based influence method

Weaknesses:

- HVP estimation is inaccurate, fragile, and numerically unstable
- Relies on assumptions that do not hold for deep models
- No incremental time complexity gains (slow)

Method #5: Representer Point [Yeh+18]

• Key Feature: Fastest influence analysis method

• **Strong Assumptions**: Linearity and stationarity

• Estimates influence using a <u>linearized representation</u> of the deep model.

Method #5: Representer Point

Method #5: Representer Point

Method #5: Representer Point

Method #5: Representer Point

50

Method #5: Representer Point

Method #5: Representer Point

Treated as a Fixed Feature Extractor

Method #5: Representer Point

Scholkopf et al.'s [SHS01] representer theorem specifies how to calculate influence over any L_2 regularized linear model ($\lambda > 0$)

Representer Point Influence Estimate

$$\hat{I}_{\rm RP} = -\frac{1}{2\lambda n} \frac{\partial L(\hat{y}_{\rm tr}, y_{\rm tr})}{\partial \hat{y}_{\rm tr}} \mathbf{f}_{\rm tr} \cdot \mathbf{f}_{\rm te}$$

Representer Point's Complexity

Time Complexity

• Full & Incremental: $\mathcal{O}(n)$ (Very Fast)

Storage Complexity: $\mathcal{O}(1)$

Space Complexity: $\mathcal{O}(n+p)$

Representer Point [Yeh+18]: Strengths & Weaknesses

Strengths:

+ Very fast (by an order of magnitude or more)

Weaknesses:

- "Too reductive" [Yeh+22]

Answer: It depends.

• The more complex the model, the less static influence makes sense.

Answer: It depends.

• The more complex the model, the less static influence makes sense.

Intuition: Static influence is like <u>reading the ending of a novel</u> and trying to understand the whole story.

- It may be possible to get a broad idea of what happened.
- Most fine details are probably lost.

Answer: It depends.

• The more complex the model, the less static influence makes sense.

Intuition: Static influence is like <u>reading the ending of a novel</u> and trying to understand the whole story.

- It may be possible to get a broad idea of what happened.
- Most fine details are probably lost.

Better Way to Understand a Novel: Read from beginning to end.

• Same applies to influence analysis

Pointwise Influence Analysis Taxonomy

Pointwise Influence Analysis Taxonomy

Dynamic Gradient-Based Influence Analysis

A Common Thread and an Alternative

All preceding methods took the same basic approach to influence:

Perturb the training set and observe the change in the model

An Orthogonal Approach

- Influence occurs <u>during</u> the training process
- Estimate influence by observing how training instances affect the test loss <u>during training</u>

 $\frac{\text{Ref.}}{\text{Instance}}$

For simplicity, assume gradient descent with a batch size of 1 and no momentum

 $\frac{\underline{\text{Ref.}}}{\underline{\text{Instance}}}$

For simplicity, assume gradient descent with a batch size of 1 and no momentum

For simplicity, assume gradient descent with a batch size of 1 and no momentum

For simplicity, assume gradient descent with a batch size of 1 and no momentum

<u></u>

For simplicity, assume gradient descent with a batch size of 1 and no momentum

For simplicity, assume gradient descent with a batch size of 1 and no momentum

<u></u>

For simplicity, assume gradient descent with a batch size of 1 and no momentum

<u>Ref.</u> Test Instance

For simplicity, assume gradient descent with a batch size of 1 and no momentum

Ref. Test Instance

For simplicity, assume gradient descent with a batch size of 1 and no momentum

<u>Ref.</u> Test Instance

For simplicity, assume gradient descent with a batch size of 1 and no momentum

For simplicity, assume gradient descent with a **batch size of 1** and **no momentum**

Ref. Test Instance

For simplicity, assume gradient descent with a **batch size of 1** and **no momentum**

Ref. Test Instance

For simplicity, assume gradient descent with a batch size of 1 and no momentum

Ref. Test Instance

For simplicity, assume gradient descent with a **batch size of 1** and **no momentum**

Method #6: TracIn [Pru+20]

Estimates influence **during training** via the preceding basic idea.

• **Problem**: Singleton batches and no momentum is too slow

TracIn Influence Estimator:

- <u>Non-Singleton</u>: Analyze batch gradients to determine which batch instances caused the test loss change
- <u>Implementation</u>: Simple. Just take a series of gradient dot products.

When Your Biggest Strength is Your Biggest Weakness

By retracing gradient descent, TracIn can detect influential training instances overlooked by other (static) methods.

• TracIn generally **outperforms** other influence estimators

The Big Weakness:

- TracIn retraces gradient descent for every test instance
- Very expensive computationally

TracIn's Complexity

Time Complexity

- Full & Incremental: $\mathcal{O}(npT)$
- Note the dependence on iteration count T for both the full and incremental complexity

Storage Complexity: $\mathcal{O}(pT)$ (Huge)

Space Complexity: $\mathcal{O}(n+p)$

TracIn: Strengths & Weaknesses

Strengths:

+ Better identifies influential instances

+ Simple theory and implementation (e.g., no HVP)

Weaknesses:

- Computationally expensive
- High storage cost

•

1

• **Recall**: Influence functions efficiently estimates the LOO influence by assuming model convexity

•

1

- **Recall**: Influence functions efficiently estimates the LOO influence by assuming model convexity
- HyDRA estimates the LOO influence but does <u>not</u> assume convexity

- **Recall**: Influence functions efficiently estimates the LOO influence by assuming model convexity
- HyDRA estimates the LOO influence but does <u>not</u> assume convexity
 - Impact: Each training set change causes the model to converge to a very different risk minimizer θ'

- **Recall**: Influence functions efficiently estimates the LOO influence by assuming model convexity
- HyDRA estimates the LOO influence but does <u>**not**</u> assume convexity
 - Impact: Each training set change causes the model to converge to a very different risk minimizer θ'
- Estimating this alternate minimizer requires retracing all of training

- **Recall**: Influence functions efficiently estimates the LOO influence by assuming model convexity
- HyDRA estimates the LOO influence but does <u>not</u> assume convexity
 - Impact: Each training set change causes the model to converge to a very different risk minimizer θ'
- Estimating this alternate minimizer requires retracing all of training
 - Explaining the mechanics of HyDRA's hypergradient tracing is beyond the scope of this talk. See our full paper for details.

Big Picture Summary: Dynamic Gradient-Based Influence Estimators

Big Picture Summary: Dynamic Gradient-Based Influence Estimators

Two Takeaways:

- Best performing
- Slowest

Applications of Influence Analysis

Data Cleaning

"Unhelpful" Training Instance: Any instance that causes the model's overall performance to (significantly) decline

• **Potential Causes**: Mislabeling, noisy features, etc.

Data Cleaning

"Unhelpful" Training Instance: Any instance that causes the model's overall performance to (significantly) decline

• **Potential Causes**: Mislabeling, noisy features, etc.

Data Cleaning's Basic Procedure:

- 1. Train a model
- 2. Use influence analysis to identify unhelpful training instances
- 3. Remove unhelpful instances from the training set and retrain the model

Data Cleaning

"Unhelpful" Training Instance: Any instance that causes the model's overall performance to (significantly) decline

• **Potential Causes**: Mislabeling, noisy features, etc.

Data Cleaning's Basic Procedure:

- 1. Train a model
- 2. Use influence analysis to identify unhelpful training instances
- 3. Remove unhelpful instances from the training set and retrain the model

Methods to identify unhelpful instances:

- Identify instances that are consistently negatively influential on a held-out set
- Identify memorized training instances

Memorization is a **Bug**...

Memorization is the influence of a training instance on itself

• *Intuition*: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?

• Conventional Wisdom: Yes

Memorization is a **Bug**...

Memorization is the influence of a training instance on itself

• *Intuition*: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?

• Conventional Wisdom: Yes

It has recently been shown that the right answer is "It's complicated"

• Downsampling was used to show that eliminating training set memorization <u>doubles the top-1</u> <u>ImageNet error</u>. [FZ20]

Memorization is a **Bug**... but also a Feature

Memorization is the influence of a training instance on itself

• *Intuition*: An instance is memorized if it must be in the training set to be correctly predicted

Question: Is memorization always a bad thing?

• Conventional Wisdom: Yes

It has recently been shown that the right answer is "It's complicated"

• Downsampling was used to show that eliminating training set memorization <u>doubles the top-1</u> <u>ImageNet error</u>. [FZ20]

Adversarial Attacks and Defenses

Training-Set Attack: Adversary inserts malicious instances into the *training set* to manipulate model behavior.

To change a prediction, the adversarial instances must *influence* the model.

• Takeaway #1: Crafting a training-set attack reduces to creating influential training instances.

Adversarial Attacks and Defenses

Training-Set Attack: Adversary inserts malicious instances into the *training set* to manipulate model behavior.

To change a prediction, the adversarial instances must *influence* the model.

• Takeaway #1: Crafting a training-set attack reduces to creating influential training instances.

Attackers are often limited in the number of adversarial instances they can insert into the training set.

• Takeaway #2: Detecting adversarial attacks reduces to identifying test examples with a few exceptionally influential training instances.

Future Research Directions

Group Influence over Pointwise Influence

Most influence analysis research focuses on pointwise effects

Most predictions are moderately affected by <u>multiple</u> training instances

- Group influence effects are often supermodular
- Intuition: A training instance deletion has a larger effect if the instance is one-of-a-kind versus if it has 1,000 copies

Group Influence over Pointwise Influence

Most influence analysis research focuses on pointwise effects

Most predictions are moderately affected by **<u>multiple</u>** training instances

- Group influence effects are often supermodular
- Intuition: A training instance deletion has a larger effect if the instance is one-of-a-kind versus if it has 1,000 copies

Takeaway #1: Pointwise influence is often too reductive

Group Influence over Pointwise Influence

Most influence analysis research focuses on pointwise effects

Most predictions are moderately affected by $\underline{\text{multiple}}$ training instances

- Group influence effects are often supermodular
- Intuition: A training instance deletion has a larger effect if the instance is one-of-a-kind versus if it has 1,000 copies

Takeaway #1: Pointwise influence is often too reductive

Takeaway #2: Future influence analysis research should focus on group effects

Improve Influence Estimation's Scalability

Influence analysis is **slow**

- Analyzing the pointwise influence w.r.t. a single test instance can take <u>hours</u>
- Influence analysis' computational overhead *restricts its usage*

To be practical, influence analysis must be **faster by at least an order of magnitude**

Improve Influence Estimation's Scalability

Influence analysis is **slow**

- Analyzing the pointwise influence w.r.t. a single test instance can take <u>hours</u>
- Influence analysis' computational overhead *restricts its usage*

To be practical, influence analysis must be faster by at least an order of magnitude

How can we get there?

- Better heuristic methods
- Surrogate model analysis (e.g., pruned/efficient models)
- Specialization of influence analysis by domain/data modality (e.g., text)

Improve Influence Estimation's Scalability

Influence analysis is **slow**

- Analyzing the pointwise influence w.r.t. a single test instance can take <u>hours</u>
- Influence analysis' computational overhead *restricts its usage*

To be practical, influence analysis must be faster by at least an order of magnitude

How can we get there?

- Better heuristic methods
- Surrogate model analysis (e.g., pruned/efficient models)
- Specialization of influence analysis by domain/data modality (e.g., text)

Understand the Risk: Increased inaccuracy + introduction of new "blind spots"

Certified Influence Estimation

Existing influence estimators provide **no accuracy guarantees**.

Many domains require that limited training-set changes do not affect a model's decision.

- Example: Certified defenses against training-set attacks.
- Influence estimation cannot currently be applied in these settings.

Certified Influence Estimation

Existing influence estimators provide **no accuracy guarantees**.

Many domains require that limited training-set changes do not affect a model's decision.

- Example: Certified defenses against training-set attacks.
- Influence estimation cannot currently be applied in these settings.

Takeaway: Certified influence estimation is sorely needed
Final Thoughts

Final Thoughts

Numerous approaches exist to define and measure influence

• This is a **feature** – not a bug

ML practitioners need to understand the trade-offs/limitations of the various methods to select the best one for their application

• Our full paper provides more details to inform this choice

Significant future work remains to make influence analysis more practical and more useable

• Existing applications demonstrate influence analysis' potential despite its limitations

For a curated list of resources related to training-set influence analysis, see our GitHub repo:

 $\underline{https://github.com/ZaydH/influence_analysis_papers}$

References

[Bae+22] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger Grosse. "If Influence Functions are the Answer, Then What is the Question?" 2022. arXiv: 2209.05364.
[BPF21] Samyadeep Basu, Phil Pope, and Soheil Feizi. "Influence Functions in Deep Learning Are Fragile". ICLR. 2021.

[BR92] Avrim L. Blum and Ronald L. Rivest. "Training a 3-node neural network is NP-complete". In: Neural Networks 5.1 (1992), pp. 117–127. ISSN: 0893-6080.

[Che+21] Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. "HyDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks". AAAI. 2021.

[CW82] R. Dennis Cook and Sanford Weisberg. Residuals and Influence in Regression. New York: Chapman and Hall, 1982.

[FZ20] Vitaly Feldman and Chiyuan Zhang. "What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation". NeurIPS. 2020.

[GZ19] Amirata Ghorbani and James Zou. "Data Shapley: Equitable Valuation of Data for Machine Learning". ICML. 2019.

[Ham74] Frank R. Hampel. "The Influence Curve and its Role in Robust Estimation". Journal of the American Statistical Association 69.346 (1974), pp. 383–393.

[Jae72] Louis A. Jaeckel. <u>The Infinitesimal Jackknife</u>. Tech. rep. Bell Laboratories, 1972.

[KL17] Pang Wei Koh and Percy Liang. "Understanding Black-box Predictions via Influence Functions". ICML. 2017.

[Pru+20] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. "Estimating Training Data Influence by Tracing Gradient Descent". NeurIPS. 2020.

[Sha53] Lloyd S Shapley. "A Value for n-Person Games". Contributions to the Theory of Games II. Princeton, NJ USA: Princeton University Press, 1953, pp. 307-317.

[SHS01] Bernhard Scholkopf, Ralf Herbrich, and Alex J. Smola. "A Generalized Representer Theorem". COLT/EuroCOLT. 2001.

[Yeh+18] Chih-Kuan Yeh, Joon Sik Kim, Ian E.H. Yen, and Pradeep Ravikumar. "Representer Point Selection for Explaining Deep Neural Networks". NeurIPS. 2018.
[Zha+17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. "Understanding Deep Learning Requires Rethinking Generalization". ICLR. 2017.

[ZZ22] Rui Zhang and Shihua Zhang. "Rethinking Influence Functions of Neural Networks in the Over-Parameterized Regime". AAAI. 2022.