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Introduction
Jigsaw Puzzles

I First jigsaw puzzle introduced in the 1760s

I First computational jigsaw puzzle solver introduced
in 1964 [4]

I Solving a jigsaw puzzle is NP-complete [1, 3].

I Example Applications: DNA fragment reassembly,
shredded document reconstruction, and speech
descrambling

I Generally, the ground-truth source is unknown.
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Introduction
Mixed-Bag Puzzles

Jig Swap Puzzles: Variant of the traditional jigsaw puzzle

I All pieces are equal-sized squares.

I Piece rotation, puzzle dimensions, and ground-truth input
contents are all unknown.

“Mixed-Bag”: Simultaneous solving of multiple jig swap puzzles

I The number of inputs may be unknown.

Randomized Solver Input – 2,017 Pieces

Solver Output #1 Solver Output #2 Solver Output #3
805 Pieces 540 Pieces 672 Pieces
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Summary of Key Contributions

I Primary Contribution: Novel mixed-bag puzzle solver
that outperforms the current state of the art [6] by:

I Requiring no external “oracle” information

I Generating superior reconstructed outputs

I Supporting more simultaneous inputs

I Additional Contribution: Define the first metrics that
quantify the quality of outputs from a multi-puzzle solver



Our Contribution:

The Mixed-Bag Solver
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Mixed-Bag Solver
Overview

Basis of the Mixed-Bag Solver: Human puzzle solving
strategy to:

I Correctly assemble small puzzle regions (i.e., segments)
I Iteratively merge smaller regions to form larger ones

Simplified Algorithm Flow:

...

Mixed Bag

Final 
Assembly

Hierarchical 
Segment 

Clustering
Segmentation Stitching
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Segmentation
Mixed-Bag Solver Stage #1

I Segment: Partial puzzle assembly where this is a high
degree of confidence pieces are placed correctly

I Each piece is assigned to at most one segment.

I Role of Segmentation: Provide structure to the set of
puzzle pieces by partitioning them into disjoint segments
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Segmentation
Algorithm Overview

I Iterative process consisting of one or more rounds.

I In each round, any pieces not already assigned to a
segment pieces are assembled into a single puzzle.

I This assembly is then segmented based on inter-piece
similarity (i.e., the “best buddies” principle).

I Segments of sufficient size are saved for use in later
Mixed-Bag Solver stages.

I Segmentation terminates when an assembly has no
segments whose size exceeds a minimum threshold
(e.g., 7).
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Segmentation
First-Round Example

Ground-Truth
Inputs Solver Output Segmented Output
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Stitching
Mixed-Bag Solver Stage #2

I Role of Stitching: Quantify the extent that any pair of
segments is related

I Mini-Assembly: Places a pre-defined, fixed number
(e.g., 100) of pieces

I Stitching Piece: A piece near the boundary of a segment
that is used as the seed of a single mini-assembly

I Segment Overlap: Inter-segment affinity score based on
the composition of a segment’s mini-assembly
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Stitching
Example – Single Input Image

Ground Truth Segmenter Output
Stitching

PiecesMini-
Assembly

Stitching piece selected from upper-right corner of the top segment
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Hierarchical Segment Clustering
Mixed-Bag Solver Stage #3

I A single ground-truth image may be comprised of multiple
segments.

I Role of Hierarchical Clustering: Estimate the number of
inputs by grouping together all segments from the same
ground-truth image.

I Single-Link Clustering: Inter-cluster similarity equals the
similarity of their most similar respective members
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Terminating the Solver
Building the final outputs

I The solver continues merging segment clusters until one
of two criteria is satisfied:

I Only a single segment cluster remains

I Maximum similarity between any segment clusters is below
a predefined threshold

I Final Assembly: Builds the final solver outputs are built
using the cluster membership results



Quantifying Solver Performance
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Quantifying Solver Performance

I Metrics quantify the quality of the solver outputs as the
reconstructions may not be reconstructions.

I Two Primary Quality Metrics: Range [0,1]
I Direct Accuracy

I Neighbor Accuracy (not discussed in this presentation)

I Disadvantages of Current Metrics: Neither account for
issues unique to mixed-bag puzzles including:

I Pieces from one input misplaced in multiple output puzzles

I Pieces from multiple inputs in the same output
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Direct Accuracy
Overview of the Current Standard

Standard Direct Accuracy: Fraction of pieces, c placed in the
same location in both the ground-truth and solved puzzles
versus the total number of pieces, n

Formal Definition:

DA =
c
n

(1)
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Direct Accuracy
Shiftable Enhanced Direct Accuracy Score (SEDAS)

SEDAS: A new quality metric with two primary improvements
over standard direct accuracy:

SEDASPi = max
l∈L

(
max
Sj∈S

ci,j,l

ni +
∑

k 6=i(mk,j)

)
(2)

I Mixed-Bag Support: For input, Pi ∈ P, and output, Sj ∈ S,
penalize for missing pieces (via ni ) and additional pieces
(via

∑
k 6=i mk,j )

I Shiftable Reference: Shift the direct accuracy reference
coordinate, l within a set of possible puzzle piece locations, L,
(l ∈ L), in order to maximize the overall score



Experimental Results
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Overview of the Experiments

I Standard Jig Swap Puzzle Experiment Conditions:
Defined by Cho et al. (CVPR 2010) [2] and followed
by [7, 6, 9, 5]

I Procedure: Randomly select, without replacement, a
specified number of images (between 2 and 5) from the
805 piece, 20 image data set [8]

I Two Primary Experiments:

I Estimation of the Ground-Truth Input Count
I Comparison of Overall Reconstruction Quality

I Baseline: Current State of the Art - Paikin & Tal
(CVPR ’15) [6]

I Our Competitive Disdvantage: Paikin & Tal’s algorithm had
to be provided the number of input puzzles.
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Estimating the Ground-Truth Input Count
Multiple Input Puzzles
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Mixed-Bag Solver’s Input Puzzle Count Error Frequency
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Puzzle Count Error: Difference between the actual number
of input puzzles and the Mixed-Bag Solver’s estimate

Overall Accuracy: 65%
I Iterations with Error Greater than One: 8%
I Performance consistent across input count

Over-Rejection of Cluster Mergers: Never
underestimated the number of input puzzles
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Comparison of Reconstruction Quality
Performance on Multiple Inputs

I Goal: Compare the quality of the outputs from the
Mixed-Bag Solver (MBS) and Paikin & Tal’s algorithm

I Note: Our Mixed-Bag Solver’s performance when it
correctly estimated the puzzle count is also shown.

I This is an approximate representation of the performance
had there been optimal hierarchical clustering.
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Comparison of Reconstruction Quality
Shiftable Enhanced Direct Accuracy Score (SEDAS)
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Performance on Multiple Input Puzzles
Results Summary

I Summary: Our Mixed-Bag Solver significantly
outperforms the state of the art, Paikin & Tal.

I This is despite their algorithm having a competitive
advantage by being supplied the number of input puzzles.

I Puzzle Input Count: Our approach shows no significant
performance decrease with additional input puzzles.

I Effect of Clustering Errors: Performance only decreased
slightly when incorrectly estimating the input puzzle count

I Many of the extra puzzles were relatively insignificant in
size.
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