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Certified Regression against Poisoning

Goal: Certify pointwise robustness R - the number of
arbitrary instances that can be inserted or deleted
from the training set with it guaranteed that:

a< f(xee) <P

a, f € R: User specified constants
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Structure of this Talk

Not the Focus: Our six certified regressors

Focus of this Talk: Our reduction
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Robust High Dimensional Sparse Regression and
Matching Pursuit

Yudong Chen, Constantine Caramanis and Shie Mannor

Abstract

In this paper we consider high dimensional sparse regression, and develop strategies able to deal with arbitrary ~
possibly, severe or coordinated ~ errors in the covariance matrix ‘may come from corrupted data, persistent
experimental errors, or malicious respondents in surveys/recommender systems, etc. Such non-stochastic error-in-
variables problems are notoriously difficult to treat, and as we demonsrate, the problem is particularly pronounced
in high-dimensional settings where the primary goal is support recovery of the sparse regressor. We develop
algorithms for support recovery in sparse regression, when some number n; out of 7+, total covariate/response
pairs are arbitrarily (possibly maliciously) corrupted. We are interested in understanding how many outliers, ny,
we can tolerate, while identifying the correct support. To the best of our knowledge, neither standard outlier
rejection techniques, nor recently developed robust regression algorithms (that focus only on corrupted response
variables), nor recent algorithms for dealing with stochastic noise or erasures, can provide guarantees on support
recovery. Perhaps surprisingly, we also show that the natural brute force algorithm that searches over all subsets
of n covariate/response pairs, and all subsets of possible support coordinates in order to minimize regression error,
is remarkably poor, unable to correctly identify the support with even n; = O(n/k) corrupted points, where k is
the sparsity. This is true even in the basic selting we consider, where all authentic measurements and noise are
independent and sub-Gaussian. In this setting, we provide a simple algorithm — no more computationally taxing
than OMP - that gives stronger performance guarantees, recovering the support with up to ny = O(n/(Vk logp))
cormupted points, where p is the dimension of the signal to be recovered.

1. INTRODUCTION

Linear regression and sparse linear regression seek to express a response variable as the linear com-
bination of (a small number of) covariates. They form one of the most basic procedures in statis-
tics, cngmcenng, and science. More recently, has found i i in the high-
dimensional regime, where the number of variables, p, is much larger than the number of measurements
or observations, n. Applications in biology, genetics, as well as in social networks, human behavior
prediction and recommendation, abound, to name just a few. The key structural property exploited in high-
dimensional regression, is that the regressor is often sparse, or near sparse, and as much recent research
has demonstrated, in many cases it can be efficiently recovered, despite the grossly underdetermined nature
of the problem (e.g., [8], [6], [4], [12], [31]). Another common theme in large-scale learning problems —
particularly problems in the high-dimensional regime — is that we not only have big data, but we have
dirty data. Recently, attention has focused on the setting where the output (or response) variable and the
matrix of covariates are plagued by erasures, and/or by stochastic additive noise (23], [26], [27], [9], [10).
Yet many ions, including those menti may suffer from persistent errors, that are ill-modeled
by stochastic distribution; indeed, many applications, particularly those modeling human behavior, may
exhibit maliciously corrupted data.

This paper is about extending the power of regression, and in particular, sparse high-dimensional
regression, to be robust to this type of noise. We call this or
robustness, because rather than restricting the magnitude of the noise, or any other such pmpcrty of
the noise, we merely assume there is a bound on how many data points, or how many coordinates of
every single covariate, are corrupted. Other than this number, we make absolutely no assumptions on
what the adversary can do — the adversary is virtually unlimited in computational power and knowledge
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Adversarially Robust Regressors Make
Strong Assumptions

Data Distribution Assumptions
Sparsity /low rank
Linear data distribution with AWGN

Model architecture assumptions
Linear model

Distributional Guarantees Only
No insight into individual predictions’ robustness



Our Goal

Provably robust regressors that are general:

No data distribution assumptions
Model architecture agnostic

Stop reinventing the wheel.
Consistently state-of-the-art with minimal effort
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Certified Poisoning Classifiers Show Promise
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Improved Certified Defenses against Data Poisoning with
(Deterministic) Finite Aggregation

‘Wenxiao Wang ' Alexander Levine' Soheil Feizi '

Abstract

Data poisoning attacks aim at manipulating model
behaviors through distorting training data. Pre-
viously, an aggregation-based certified defense,
Deep Partition Aggregation (DPA), was proposed
1o mitigate this threat, DPA predicts through an
aggregation of base classifiers trained on disjoint
subsets of data, thus restricting its sensitivity to
dataset distortions. In this work, we propose an
improved certified defense against general poi-
soning attacks, namely Finite Aggregation. In
contrast to DPA, which directly splits the training
set into disjoint subsets, our method first splits the
training set into smaller disjoint subsets and then
combines duplicates of them to build larger (but
not disjoint) subsets for training base classifiers.
This reduces the worst-case impacts of poison
samples and thus improves certified robustness
bounds. In addition, we offer an alternative view
of our method, bridging the designs of determin-
istic and stochastic aggregation-based certified
defenses. Empirically, our proposed Finite Ag-
gregation consistently improves certificates on
MNIST, CIFAR-10, and GTSRB, boosting certi-
fied fractions by up to 3.05%, 3.87% and 4.77%,
respectively, while keeping the same clean ac-
curacies as DPA’s, effectively establishing a new
state of the art in (pointwise) certified robustness
against data poisoning.

1. Introduction

Over the past years, we have witnessed the increasing pop-
ularity of deep learning in a variety of domains including
computer vision (He et al., 2016), natural language process-

' Department of Computer Science, University of Maryland,
College Park, Maryland, USA. Correspondence to: Wenxiao Wang
<wwx@umd.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

ing (Devlin et al., 2019), and speech recognition (Xiong
ctal,, 2016). In many cases, such rapid developments de-
pend heavily on the increased availability of data collected
from diverse sources, which can be different users or sim-
ply websites from all over the Internet. While the richness
of data sources greatly facilitates the advancement of deep
learning techniques and their applications, i also raises con-
cemns about their reliability. This makes the data poisoning
threat model, which concerns the reliability of models under
adversarially corrupted training samples, more important
than ever (Goldblum et al., 2020)

In this work, we use a general formulation of data poisoning
attacks as follows: The adversary is given the ability to
insert/remove a bounded number of training samples in
order to manipulate the predictions (on some target samples)
of the model trained from the corresponding training set.
Here, the number of samples that the adversary is allowed
to insert/remove is referred to as the attack size.

Many variants of empirical poisoning attacks targeting deep
neural networks have been proposed, including Feature Col-
lision (Shafahi et al., 2018), Convex Polytope (Zhu et al.,
2019), Bullseye Polytope (Aghakhani et al., 2021) and
Witches’ Brew (Geiping et al., 2021). These attacks are
also referred to as triggerless attacks since no modification
to the targets is required. Unlike triggerless attacks, back-
door attacks are poisoning attacks that allow modifications
of the target samples, for which a variety of approaches have
been developed including backdoor poisoning (Chen et al.,
2017), label-consistent backdooring (Tuner et al., 2019)
and hidden-trigger backdooring (Saha et al,, 2020). While it
is shown in (Schwarzschild et al., 2021) that the evaluation
settings can greatly affect the success rate of many data
poisoning attacks to deep models, the vulnerability issues
against poisoning attacks remain because (i) the current at-
tacks can still succeed in many scenarios, and (ii) stronger
adaptive poisoning attacks can potentially be developed in
the future, posing practical threats.

In this work, we focus on developing provably robust de-
fenses against general poisoning attacks. In particular,
aggregation-based techniques, including a deterministic one
(Levine & Feizi, 2021) and stochastic ones (Jia et al., 2021;
Chen et al., 2020), have been adopted o offer (pointwise)

10



Strengths of Certified Poisoning Classifiers

No data distribution assumptions
Model architecture agnostic
Strong empirical performance

Certify 65% of MNIST predictions up to 0.8% arbitrary poison

Certify 16% of CIFAR10 predictions up to 0.1% arbitrary poison
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General Structure of a Certified Poisoning Classifier
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General Structure of a Certified Poisoning Classifier
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Example: kNN Certified Classifier [Jia+22]
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Example: kNN Certified Classifier [Jia+22]
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Example: Certified Ensemble Classifier [LF21]
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Example: Certified Ensemble Classifier [LF21]
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Example: Certified Ensemble Classifier [LF21]
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Reducing Certified Regression to Voting-
Based Certified Classification
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“Don’t Reinvent the Wheel”

Reduction: An algorithm for converting a problem Q into a
different problem Q' that can be readily solved.

) to certified classification (Q’)
“Transform certified poisoning classifiers into certified regressors”
Benefits:

Inherit the strengths of the certified classifiers
Each improved certified classifier improves certified regression

17



“Don’t Reinvent the Wheel”

)

Reduction: An algorithm for converting a problem Q into a
different problem Q' that can be readily solved.

Our Idea: Reduce certified regression (Q) to certified classification (Q°)
“Transform certified poisoning classifiers into certified regressors”
“Transform certified poisoning classifiers into certified regressors”
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Key Insight of the Reduction

For any binary multiset,
the plurality label and median have
equivalent robustness



Relating Real-Valued and Binary Robustness

Real votes ) @2 @D
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Relating Real-Valued and Binary Robustness
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Relating Real-Valued and Binary Robustness
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Relating Real-Valued and Binary Robustness
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“Transform certified poisoning
classifiers into certified regressors”
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General Structure of a Certified Poisoning Classifier
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General Structure of a Certified Poisoning Regressor
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General Structure of a Certified Poisoning Regressor
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General Structure of a Certified Poisoning Regressor
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General Structure of a Certified Poisoning Regressor

Certified Regressor (f)
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Summary: Reducing Certified Regression
to Voting-Based Certified Classification

Three simple steps:
Generate real-valued votes instead of labels

Use median as the decision function

Binarize the real-valued votes V using threshold g

22



Our Reduction Yields a Suite of
Certified Regressors

We propose six certified regressors:

Two based on certified nearest neighbor classifiers [Jia+22]
Two based on certified ensemble classifiers [LF21, WLF22]

Two based on our improved certified ensemble classifiers
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Empirical Evaluation
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Empirical Evaluation

Datasets: 5 Regression + 1 Binary Classification

Performance Metric: Certified accuracy
Percentage of correctly predicted test instances given a and 8
with certified robustness R =

Model Architecture Agnostic: Decision trees and
linear models
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Certified Regression — Takeaways

- - kENN-CR (ours) - - PCR (ours) - - OCR (ours)
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One more thing...
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Reducing Certified Regression to
Certified Classification for General
Poisoning Attacks
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