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Certified Regression against Poisoning

Goal: Certify pointwise robustness 𝑅 – the number of 
arbitrary instances that can be inserted or deleted 
from the training set with it guaranteed that:

𝜉! ≤ 𝑓 𝑥"# ≤ 𝜉$

• 𝛼, 𝛽 ∈ ℝ: User specified constants
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Structure of this Talk

Not the Focus: Our six certified regressors

Focus of this Talk: Our reduction

4



Specialized Robust Regressors Under Outliers & Poison
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Adversarially Robust Regressors Make 
Strong Assumptions

Data Distribution Assumptions
• Sparsity/low rank
• Linear data distribution with AWGN

Model architecture assumptions
• Linear model

Distributional Guarantees Only
• No insight into individual predictions’ robustness
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Our Goal

Provably robust regressors that are general:

◉ No data distribution assumptions

◉ Model architecture agnostic

◉ Stop reinventing the wheel.
○ Consistently state-of-the-art with minimal effort
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A Bit of a Detour



Certified Poisoning Classifiers Show Promise
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Strengths of Certified Poisoning Classifiers

1. No data distribution assumptions

2. Model architecture agnostic

3. Strong empirical performance
○ Certify 65% of MNIST predictions up to 0.8% arbitrary poison

○ Certify 16% of CIFAR10 predictions up to 0.1% arbitrary poison
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General Structure of a Certified Poisoning Classifier
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Example: kNN Certified Classifier [Jia+22]
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Example: kNN Certified Classifier [Jia+22]

Vote Distribution:
◉ 4 votes label
◉ 1 vote label

Robustness Certifier: At least two votes much change to 
perturb the plurality label

𝑅 =
4 − 1
2

= 1
14
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Example: Certified Ensemble Classifier [LF21]
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Reducing Certified Regression to Voting-
Based Certified Classification



“Don’t Reinvent the Wheel”

Reduction: An algorithm for converting a problem 𝑄 into a 
different problem 𝑄′ that can be readily solved.

) to certified classification (𝑄′)

“Transform certified poisoning classifiers into certified regressors”

Benefits:
• Inherit the strengths of the certified classifiers
• Each improved certified classifier improves certified regression

17
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Key Insight of the Reduction

For any binary multiset, 
the plurality label and median have 

equivalent robustness
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Relating Real-Valued and Binary Robustness
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“Transform certified poisoning 
classifiers into certified regressors”
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Certified Regressor (𝒇)
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Certified Regressor (𝒇)
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Summary: Reducing Certified Regression 
to Voting-Based Certified Classification

Three simple steps:
• Generate real-valued votes instead of labels

• Use median as the decision function

• Binarize the real-valued votes 𝒱 using threshold 𝛽
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Our Reduction Yields a Suite of 
Certified Regressors

We propose six certified regressors:

• Two based on certified nearest neighbor classifiers [Jia+22]

• Two based on certified ensemble classifiers [LF21, WLF22]

• Two based on our improved certified ensemble classifiers
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Empirical Evaluation



Empirical Evaluation

◉ Datasets: 5 Regression + 1 Binary Classification

◉ Performance Metric: Certified accuracy
○ Percentage of correctly predicted test instances given 𝛼 and 𝛽

with certified robustness 𝑅 ≥ 𝜓

◉ Model Architecture Agnostic: Decision trees and 
linear models
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Certified Regression – Takeaways
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Certified Accuracy:
• Half of predictions up to 1% 

poisoning

• Third of predictions up to 
4% poisoning

Method Comparison:
• Nearest Neighbors: Better 

maximum robustness (𝑅)

• Ensemble: Better accuracy



One more thing... 
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