
Positive-Unlabeled Learning with
Arbitrarily Non-Representative Labeled Data

Zayd Hammoudeh 1 Daniel Lowd 1

Abstract

Positive-unlabeled (PU) learning trains a binary
classifier using only labeled-positive and unla-
beled data. A common simplifying assumption is
that the labeled data is representative of the target
positive class, but this assumption rarely holds in
practice. This papers show that PU learning is
possible even with arbitrarily non-representative
labeled-positive data. Our key insight is that only
the negative class’s distribution need be fixed. We
integrate this idea into two statistically consistent
methods to address arbitrary positive bias – one
approach combines negative-unlabeled learning
with unlabeled-unlabeled learning while the other
uses a novel, recursive risk estimator. Addition-
ally, we propose a general, simplified approach to
address PU risk estimation overfitting.

1. Introduction
Positive-negative (PN) learning (i.e., ordinary supervised
classification) trains a binary classifier using positive and
negative labeled datasets. Often good labeled data are
unavailable for one class. High negative-class diversity
may make constructing a representative labeled set pro-
hibitively difficult (du Plessis et al., 2015), and some do-
mains (e.g., medical records) do not systematically record
negative data (Bekker & Davis, 2018).

Positive-unlabeled (PU) learning addresses this problem by
training classifiers using only labeled-positive and unlabeled
data. Real world-domains where PU learning has been ap-
plied include: opinion spam detection (Hernández Fusilier
et al., 2013), disease-gene identification (Yang et al., 2012),
and protein similarity prediction (Elkan & Noto, 2008).
Negative-unlabeled (NU) learning is functionally identical
to PU learning but with labeled-negative data.
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Most PU learning methods assume the labeled set is selected
completely at random (SCAR) (Elkan & Noto, 2008) from
the target positive distribution. External factors (e.g., tem-
poral drift, domain shift, and adversarial drift) can cause a
shift between the labeled-positive and target distributions.
Biased-positive, unlabeled (bPU) learning relaxes SCAR by
modeling selection bias for the labeled data (Bekker et al.,
2019; Kato et al., 2019) or a covariate shift between the
training and target distributions (Sakai & Shimizu, 2019).

We generalize bPU learning to the more challenging
arbitrary-positive, unlabeled (aPU) learning, where the
target-positive class may shift arbitrarily w.r.t. the labeled-
positive data. Solving this problem would enable deep learn-
ing to be applied to more problems where labeled data is
limited; it would also eliminate the cost to label new data
after a positive class shift. But, devoid of some assumption,
aPU learning is impossible (Elkan & Noto, 2008). Our key
insight is that given a labeled-positive set and two unlabeled
sets, aPU learning is possible when all negative examples
are generated from a single distribution. The labeled and
target positive distributions’ supports may even be disjoint.

Many real-world PU learning tasks feature a shifting posi-
tive class but (largely) fixed negative class including:

1. Virological Analysis: Influenza varies annually in
severity and type. Infection rate prediction in a se-
vere flu season is possible provided data from the same
geographic region the previous year when the flu was
mild (Alaiz-Rodrı́guez & Japkowicz, 2008). Consider-
ing healthy patients from the same region year-on-year
keeps the negative-class distribution largely static.

2. Adversarial PU Learning: Malicious adversaries
(e.g., malware authors) rapidly adapt their attacks to
avoid automated detection. The benign class changes
much more slowly but may be too diverse to create a
representative labeled set (Li et al., 2014; Zhang et al.,
2017; Zhang et al., 2019).

Our primary contributions are three-fold with most experi-
ments and all theorems (with proofs) in the supplementals:

1. We propose abs-PU — a simplified consistent tech-
nique to correct general PU risk overfitting.
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2. We address our aPU learning task via a two-step formu-
lation; the first step applies standard PU learning and
the second uses unlabeled-unlabeled (UU) learning.

3. We separately propose PURR — a novel, recursive,
consistent aPU risk estimator.

2. Ordinary Positive-Unlabeled Learning
As a brief overview of PU learning without bias1, consider
two random variables, covariate X ∈ Rd (d ∈ N+) and la-
bel Y ∈ {±1}, with joint distribution p(x, y). Marginal
distribution pu(x) is composed from prior π := p(Y =+1),
positive class-conditional pp(x) := p(x|Y =+1), and nega-
tive class-conditional pn(x) := p(x|Y =−1).

Risk Let g : Rd → R be any decision function param-
eterized by θ, and let ` : R→ R≥0 be the loss function.
Risk R(g) := E(X,Y )∼p(x,y)[`(Y g(X))] quantifies g’s ex-
pected loss over p(x, y). It decomposes via the product
rule to R(g) =πR+

p (g)+(1− π)R−n (g), where the labeled
risk is RŷD(g) := EX∼pD(x)[`(ŷg(X))], for predicted label
ŷ ∈ {±1} and distribution D ∈ {p, n, u}.

Consider the case-control scenario where each dataset is
i.i.d. sampled from its associated distribution. PN learning
has two labeled datasets: positive set Xp := {xp

i}
np
i=1

i.i.d.∼ pp(x)

and negative set Xn := {xn
i}nn
i=1

i.i.d.∼ pn(x). These are used to
calculate labeled empirical risks R̂+

p (g) = 1
np

∑np
i=1 `(g(x

p
i))

and R̂−n (g) = 1
nn

∑nn
i=1 `(−g(x

n
i)). The empirical posi-

tive-negative risk is: R̂PN(g) := πR̂+
p (g) + (1− π)R̂−n (g).

PU learning cannot directly estimate R̂ŷn (g) since Xn = ∅.
Let Xu := {xu

i}
nu
i=1

i.i.d.∼ pu(x) be an unlabeled set with
R̂ŷu (g) := 1

nu

∑nu
i=1 `(ŷg(xu

i )). du Plessis et al. (2014) make
a foundational contribution that,

(1− π)Rŷn (g) = Rŷu (g)− πRŷp (g). (1)

du Plessis et al.’s unbiased PU (uPU) estimator is then
R̂uPU(g) := πR̂+

p (g) + R̂−u (g)− πR̂−p (g). Kiryo et al. (2017)
observe that highly expressive models (e.g., neural net-
works) can overfit Xp causing uPU to estimate that
R̂−u (g)− πR̂−p (g) < 0. Since negative-valued risk is impos-
sible, Kiryo et al.’s non-negative PU (nnPU) risk estimator
ignores negative risk estimates via a max term:

R̂nnPU(g) := πR̂+
p (g) + max{0, R̂−u (g)− πR̂−p (g)}. (2)

nnPU requires a custom ERM algorithm with specialized
“defitting” to correct negative-valued risk estimates.

3. Absolute Value Overfitting Correction
Rather than enforcing non-negativity with two combined
approaches (max and “defitting”) like Kiryo et al., we pro-

1A nomenclature reference appears in supplemental Section A.

pose a simpler method, inspired by Lagrange multipliers,
that puts the non-negativity constraint directly into the risk
estimator. Our absolute-value correction,

(1− π)R̈ŷn (g) :=
∣∣R̂ŷu (g)− πR̂ŷp (g)∣∣, (3)

replaces nnPU’s max with absolute value to prevent the op-
timizer overfitting an implausible risk estimate by explicitly
penalizing for R̂ŷu (g)− πR̂ŷp (g) < 0. This penalty “defits”
the learner automatically eliminating the need for nnPU’s
custom ERM algorithm.

Our abs-PU risk estimator leverages abs. value correction:

R̂abs-PU(g) := πR̂+
p (g) +

∣∣R̂−u (g)− πR̂−p (g)
∣∣. (4)

By Theorem 2, abs-PU is statistically consistent like nnPU.
Empirically we saw that abs-PU yields models of similar
or slightly better accuracy than nnPU but with simpler op-
timization. The following builds on abs-PU with a full
empirical comparison to nnPU in suppl. Section G.5.

4. Arbitrary-Positive, Unlabeled Learning
Arbitrary-positive unlabeled (aPU) learning – the focus of
this work – considers two joint distributions: train ptr(x, y)
and test pte(x, y). Notation ptr-D(x) where D ∈ {p, n, u}
refers to the training positive class-conditional, negative
class-conditional, and marginal distributions respectively.
pte-D(x) denotes the corresponding test distributions.

Nothing is assumed about the posteriors, i.e., pT (y|x),
(T ∈ {tr, te}) nor about the positive class-conditionals
pT -p(x). We only assume a fixed negative class-conditional,

pn(x) = ptr-n(x) = pte-n(x). (5)

The train and test positive-class priors, πtr and πte respec-
tively, are treated as known throughout this work.

Fig. 1a shows the available aPU datasets: positive set
Xp

i.i.d.∼ ptr-p(x) and unlabeled sets Xtr-u := {xi}ntr-u
i=1

i.i.d.∼ ptr-u(x)

and Xte-u := {xi}nte-u
i=1

i.i.d.∼ pte-u(x); their empirical risks are de-
fined as before. An optimal classifier minimizes the test
risk/expected loss, E(X,Y )∼pte(x,y)[`(Y g(X))].

Relating aPU and Covariate Shift Adaptation Methods

Covariate shift (Shimodaira, 2000) is a common technique
to address differences between ptr(x, y) and pte(x, y). The
importance function is w(x) := pte-u(x)

ptr-u(x)
. Under covariate

shift’s consistent input-output relation assumption, i.e.,
ptr(y|x) = pte(y|x), it follows that w(x)ptr(x, y) = pte(x, y).

Sakai & Shimizu (2019) exploit this relationship in their
PUc risk estimator. w(x) is approximated via direct den-
sity-ratio estimation over Xtr-u and Xte-u. PUc couples w(x)
with uPU and serves as this work’s primary baseline.
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Xtr-u

Xp

Xte-u

(a) Example aPU dataset

Step #1
PU (σ̂)
−−−−−→

X̃n Xte-u

(b) Weighting Xtr-u by σ̂ yields X̃n

Step #2
wUU/aPNU (g)
−−−−−−−−−−→ g(x)

Xte-u

(c) Final classifier g

Figure 1. A toy aPU dataset is shown in 1a with ( ) representing a labeled positive example, ( ) an unlabeled train sample, and ( ) an
unlabeled test sample. Borders surround each set for clarity. In two-step aPU learning, step #1 trains probabilistic classifier σ̂.
Fig. 1b visualizes σ̂’s predicted negative-posterior probability using marker ( ) size. Fig. 1c shows the final decision boundary with ( )
and ( ) representing Xte-u examples classified negative and positive respectively.

5. aPU Learning via UU Learning
To build an intuition for solving the aPU learning problem,
suppose a perfect classifier correctly labels Xtr-u. Let Xtr-n
be Xtr-u’s negative examples. Xtr-n is SCAR w.r.t. ptr-n(x)
and by Eq. (5) also pte-n(x). Multiple options exist to then
train classifier g, e.g., NU learning with Xtr-n and Xte-u.

A perfect classifier is unrealistic. Our key insight is that
weighting Xtr-u by ptr(Y =−1|x) transforms Xtr-u into a rep-
resentative negative set. We then propose two methods to
fit g: one a variant of NU learning we call weighted-un-
labeled, unlabeled (wUU) learning and the other a semi-
supervised method we call arbitrary-positive, negative, unla-
beled (aPNU) learning. We refer to the complete algorithms
as PU2wUU and PU2aPNU, respectively. Figures 1b and 1c
visualize our two-step method, with a formal presentation
in Algorithm 1 and a detailed description below.

Step #1: Create a Representative Negative Set

This step’s goal is to learn the training distribution’s neg-
ative class-posterior, ptr(Y =−1|x). We achieve this by
training PU probabilistic classifier σ̂ : Rd → [0, 1] using Xp
and Xtr-u. In principle, any probabilistic PU method can
be used; we focused on ERM-based PU methods with the
logistic loss as ` and sigmoid output activation.

Theorem 3 shows that weighting Xtr-u by σ̂ yields a consis-
tent surrogate negative set X̃n that estimates the negative
labeled risk Rŷn (g); we denote this estimator R̃ŷn-u(g).

Step #2: Classify Xte-u

Negative-unlabeled (NU) learning is function-
ally the same as PU learning. Sakai et al.
(2017) formalize an unbiased NU risk estimator,
R̂NU(g) :=

∣∣R̂+
u (g)− (1− π)R̂+

n (g)
∣∣+ (1− π)R̂−n (g) (de-

fined here with our absolute-value-correction). Our
weighted-unlabeled, unlabeled (wUU) estimator,

R̂wUU(g) :=
∣∣R̂+

te-u(g)−(1−πte)R̃
+
n-u(g)

∣∣+(1−πte)R̃
−
n-u(g), (6)

Algorithm 1 Two-step unlabeled-unlabeled aPU learning
Input: Data (Xp,Xtr-u,Xte-u)

1: Train probabilistic classifier σ̂ using Xp and Xtr-u

2: Use σ̂ to transform Xtr-u into surrogate negative set X̃n
3: Train g(x) using ERM with R̂wUU(g) or R̂aPNU(g)

modifies Sakai et al.’s definition to use X̃n andXte-u. Observe
that R̂wUU(g) uses only data that was originally unlabeled.
When R̃ŷn-u(g) is consistent, wUU is also consistent.

Risk Estimation with Positive Data Reuse When
ptr-p(x)’s and pte-p(x)’s supports intersect, Xp may contain
useful information about the target distribution. In such
settings, a semi-supervised approach leveraging Xp, surro-
gate X̃n, and Xte-u may perform better than wUU.

Sakai et al. (2017) propose the PNU risk estimator,
R̂PNU(g) := (1− ρ)R̂PN(g) + ρR̂NU(g), where hyperparame-
ter ρ ∈ (0, 1) weights the PN and NU risk estimators. Our
arbitrary-positive, negative, unlabeled (aPNU) risk esti-
mator below modifies PNU to use X̃n and absolute-value
correction.

R̂aPNU(g) := (1− ρ)πteR̂
+
p (g) + (1− πte)R̃

−
n-u(g)

+ ρ
∣∣∣R̂+

te-u(g)− (1− πte)R̃
+
n-u(g)

∣∣∣ (7)

A midpoint value of ρ = 0.5 empirically performed well
when no knowledge about the positive shift is assumed.

6. PU Recursive Risk Estimation
Two-step methods — both ours and PUc — solve a chal-
lenging problem by decomposing it into sequential (easier)
subproblems. Serial decision making’s disadvantage is that
earlier errors propagate and can be amplified when subse-
quent decisions are made on top of those errors.

Our Positive-Unlabeled Recursive Risk (PURR) estimator
learns our aPU setting via a single, joint method. Due to lim-
ited space, PURR is described in supplemental Section B.
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Figure 2. Mean inductive misclassification rate over 100 trials on the MNIST, 20 Newsgroups, CIFAR10, & TREC datasets for our three
methods – PURR, PU2aPNU, & PU2wUU which are denoted with † – and the baselines. Each numbered plot (2–4) corresponds to one
shift task in Section 7.2 and Table 2. The TREC spam email classification experiments are detailed in Section 7.3 and Table 3.

7. Experimental Results
Limited space allows us to discuss only two experiment sets
here; Section G details additional experiments. The primary
performance metric is inductive misclassification rate.

7.1. Experimental Setup

Supplemental Section F details the complete experimental
setup2 which we very briefly summarize below.

Baselines PUc (Sakai & Shimizu, 2019) with a linear-in-
parameter model and Gaussian kernel basis is the primary
baseline. Ordinary nnPU is the performance floor. To
ensure the strongest baseline, we separately trained nnPU
using Xte-u as well as with the combined Xtr-u ∪ Xte-u and
report each experiment’s best performing configuration, de-
noted nnPU*. PN-test (trained on labeled Xte-u) is a refer-
ence for the performance ceiling.

Datasets Section 7.2 considers the MNIST, CIFAR10, and
20 Newsgroups datasets with binary classes formed by par-
titioning the dataset labels. Section 7.3 relates two TREC
spam email datasets to replicate real-world adversarial con-
cept drift.

Learner Architecture We trained neural networks (NNs)
via stochastic optimization, i.e., AdamW (Loshchilov & Hut-
ter, 2017). Probabilistic classifier, σ̂, used our abs-PU risk
estimator with logistic loss. All other learners used sigmoid
loss for `. Since PUc is limited to linear-in-parameter mod-
els with Gaussian kernels, we limited our NNs to at most
three fully-connected layers of 300 neurons. For MNIST, we
trained NNs from scratch. Transfer learning via pretrained
deep networks was used to encode the CIFAR10, 20 News-
groups, and TREC datasets into static representations used
by all learners (see Sections F.4, F.5, & F.6 resp.).

Hyperparameters Our only individually tuned hyperpa-
rameters are learning rate and weight decay. For aPNU,
ρ = 0.5. PUc’s hyperparameters were tuned via importance-
weighted cross validation (Sugiyama et al., 2007).

2Source code: https://github.com/ZaydH/udl arbitrary pu.

7.2. Partially and Fully Disjoint Positive Supports

Here we replicate scenarios where positive subclasses exist
only in the test distribution (e.g., zero-day attacks). Suppl.
Table 2 details the positive train/test and negative class def-
initions. Each dataset has four experimental conditions
(ordered by row number): (1) Ptrain = Ptest, i.e., no bias, (2 &
3 resp.) partially disjoint positive supports without and with
prior shift, and (4) disjoint positive class definitions.

Results are shown in Figure 2 and suppl. Table 2. When
there was a positive-shift, our three methods always outper-
formed PUc and nnPU* according to a 1% paired t-test. Our
advantage over PUc is not attributable to our use of NNs as
PUc generally outperformed nnPU* by a wide margin.

For partially disjoint positive supports (Table 2 rows 2 & 3
for each dataset), PU2aPNU was the top performer for five
of six setups. This pattern reversed for fully disjoint supports
(row 4) where PU2aPNU always lagged PU2wUU.

7.3. Case Study: Arbitrary Adversarial Concept Drift

PU learning has been applied to multiple adversarial do-
mains including opinion spam (Hernández Fusilier et al.,
2013; Zhang et al., 2019). We use spam classification as a
vehicle to test our methods in an adversarial setting by con-
sidering two different TREC email spam datasets — training
on TREC05 and evaluating on TREC07.

Spam – the positive class – evolves quickly over time, but
the datasets’ ham emails are also quite different: TREC05
relies on Enron emails while TREC07 is mostly emails from
a university server. Thus, this represents a more challenging,
realistic setting where Eq. (5)’s assumption does not hold.

Figure 2 and suppl. Table 3 show our methods outperformed
PUc and nnPU* according a 1% paired t-test across three
training priors. PU2wUU is the top-performer as σ̂ accu-
rately labels Xtr-u, yielding a strong surrogate negative set.

Overall, this shows that our aPU setting arises in real-world
domains. We handle large positive shifts better than prior
work, even in realistic cases of a shifting negative class.

https://github.com/ZaydH/udl_arbitrary_pu
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Supplemental Materials

A. Nomenclature

Table 1: aPU nomenclature reference

PN Positive-negative learning, i.e., ordinary supervised classification
PU Positive-unlabeled learning
NU Negative-unlabeled learning
uPU Unbiased Positive-Unlabeled risk estimator from (du Plessis et al., 2014). See Section 2
nnPU Non-negative Positive-Unlabeled risk estimator from (Kiryo et al., 2017). See Section 2
abs-PU Our Absolute-value Positive-Unlabeled risk estimator. See Section 3
bPU Biased-positive, unlabeled learning where the labeled-positive set is not representative of the target

positive class. bPU algorithm categories include sample selection bias (Bekker et al., 2019; Kato et al.,
2019) and covariate shift methods (Sakai & Shimizu, 2019)

aPU Proposed in this work, arbitrary-positive, unlabeled learning generalizes bPU learning where the positive
training data may be arbitrarily different from the target application’s positive-class distribution

PUc Positive-Unlabeled Covariate shift algorithm from (Sakai & Shimizu, 2019). See Section 4
PU2wUU Our Positive-Unlabeled to Weighted Unlabeled-Unlabeled (two-step) aPU learner. See Section 5
PU2aPNU Our Positive-Unlabeled to Arbitrary-Positive, Negative, Unlabeled (two-step) aPU learner. See Section 5
PURR Our Positive-Unlabeled Recursive Risk (one-step) aPU estimator. See Section 6
abs-PU Our Absolute-value Positive-Unlabeled risk estimator. See Section 3
nnPU* Version of nnPU used as an empirical baseline. nnPU* considers two classifiers – one trained withXte-u as

the unlabeled set and the other trained with Xtr-u ∪ Xte-u as the unlabeled set – and reports whichever
configuration performed better. See Section 7

abs-PU* Baseline equivalent of nnPU* except risk estimator R̂abs-PU(g) is used instead of R̂nnPU(g). See Sec-
tion G.5.2

X Covariate where X ∈ Rd
Y Dependent random variable, i.e., label, where Y ∈ {±1}
ŷ Predicted label ŷ ∈ {±1}
g Decision function, g : Rd → R
θ Parameter(s) of decision function g
G Real-valued decision function hypothesis class, i.e., g ∈ G
` Loss function, ` : R→ R≥0
pT (x, y) Joint distribution, where T ∈ {tr, te} for train and test resp.
πT Positive-class prior probability, πT := pT (Y =+1) where T ∈ {tr, te} for train & test resp.
pT -p(x) Positive class-conditional pT -p(x) := pT (x|Y =+1) where T ∈ {tr, te} for train & test resp.
pT -n(x) Negative class-conditional pT -n(x) := pT (x|Y =−1) where T ∈ {tr, te} for train & test resp.
pT -u(x) Marginal distribution where pT -u(x) := pT (x) where T ∈ {tr, te} for train and test resp.
Xp Labeled (positive) dataset, i.e., Xp

i.i.d.∼ ptr-p(x)

Xtr-u Unlabeled dataset sampled from the training marginal distribution, i.e., Xtr-u
i.i.d.∼ ptr-u(x)

Xte-u Unlabeled dataset sampled from the test marginal distribution, i.e., Xte-u
i.i.d.∼ pte-u(x)

σ̂ Probabilistic classifier, σ̂ : Rd → [0, 1] that approximates ptr(Y =−1|x)

Σ̂ Function class containing σ̂
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Table 1: aPU nomenclature reference (continued)

Xn Labeled negative dataset. In PU learning, Xn = ∅
X̃n Surrogate negative set formed by reweighting Xtr-u by σ̂
R(g) Risk, i.e., expected loss, for decision function g and loss `, i.e., R(g) := E(X,Y )∼p(x,y)[`(Y g(X))]

R̂(g) Empirical estimate of risk R(g)

R̂ŷD(g) Empirical risk when predicting label ŷ ∈ {±1} on data sampled from some distribution, pD(x). See
Section 2

R̈ŷn (g) Labeled negative risk with absolute-value correction. See Eq. (3) in Section 3
R̃ŷn-u(g) Surrogate negative risk formed by weighting unlabeled set Xtr-u by probabilistic classifier σ̂

where R̃ŷn-u(g) := 1
ntr-u

∑
xi∈Xtr-u

σ̂(xi)`(ŷg(xi))
1−πtr

w(x) Covariate shift importance function based on density-ratio estimation where w(x) := pte-u(x)
ptr-u(x)

np Size of the labeled (positive) dataset, i.e., np := |Xp|
ntr-u Size of the unlabeled training dataset, i.e., ntr-u := |Xtr-u|
nte-u Size of the unlabeled test dataset, i.e., nte-u := |Xte-u|
nTest Size of the inductive test set
A Learning or optimization algorithm
η Learning rate hyperparameter, η > 0
λ Weight decay hyperparameter, λ ≥ 0
γ Non-negative gradient attenuator hyperparameter γ ∈ (0, 1]. This hyperparameter is ignored when

absolute-value correction is used.
N (µ, Im) Multivariate Gaussian (normal) distribution with mean µ and m-dimensional identity covariance. See

Section G.1
[a]+ := max{0, a}. See Section E.2
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B. Positive-Unlabeled Recursive Risk Estimation
Here we describe in detail our recursive risk estimation method discussed briefly in Section 6.

Two-step methods — both ours and PUc — solve a challenging problem by decomposing it into sequential (easier)
subproblems. Serial decision making’s disadvantage is that earlier errors propagate and can be amplified when subsequent
decisions are made on top of those errors.

Can our aPU problem setting be learned in a single joint method? Sakai & Shimizu leave it as an open question. We show in
this section the answer is yes.

To understand why this is possible, it helps to simplify our perspective of unbiased PU and NU learning. When estimating
a labeled risk, R̂ŷD(g) (where D ∈ {p, n}), the ideal case is to use SCAR data from class-conditional distribution pD(x).
When such labeled data is unavailable, the risk decomposes via the simple linear transformation,

(1− α)R̂ŷA(g) = R̂ŷu (g)− αR̂ŷB(g) (8)

whereA = n andB = p for PU learning or vice versa for NU learning. α is the positive (negative) prior for PU (NU) learning.

In standard PU and NU learning, either R̂ŷA(g) or R̂ŷB(g) can always be estimated from labeled data. If that were not true,
can this decomposition be applied recursively (i.e., nested)? The answer is again yes. Below we apply recursive risk
decomposition to our aPU learning task.

Applying Recursive Risk to aPU learning

Our positive-unlabeled recursive risk (PURR) estimator quantifies our aPU setting’s empirical risk and integrates into a
standard ERM framework. PURR’s top-level definition is simply the test risk:

R̂PURR(g) = πteR̂
+
te-p(g) + (1− πte)R̂

−
te-n(g). (9)

Since only unlabeled data is drawn from the test distribution, both terms in Eq. (9) require risk decomposition.

First, for R̂−te-n(g), we consider its more general form R̂ŷte-n(g) below since R̂+
te-n(g) will be needed as well. Using Eq. (5)’s as-

sumption, R̂ŷte-n(g) can be estimated directly from the training distribution. Combining Eq. (1) with absolute-value correction,
we see that

R̂ŷte-n(g) = R̂ŷtr-n(g) =
1

1− πtr

∣∣∣R̂ŷtr-u(g)− πtrR̂
ŷ
tr-p(g)

∣∣∣. (10)

Next, R̂+
te-p(g), as a positive risk, undergoes NU decomposition so (with absolute-value correction):

πteR̂
+
te-p(g) =

∣∣∣R̂+
te-u(g)− (1− πte)R̂

+
te-n(g)

∣∣∣. (11)

Eq. (10) with ŷ = +1 substitutes for R̂+
te-n(g) in Eq. (11) yielding R̂PURR(g)’s complete definition:

R̂PURR(g) =

∣∣∣∣∣ R̂+
te-u(g)− (1− πte)

∣∣∣∣ R̂+
tr-u(g)− πtrR̂

+
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂+

te-n(g)

∣∣∣∣
︸ ︷︷ ︸

πteR̂
+
te-p(g)

∣∣∣∣∣+ (1− πte)

∣∣∣∣ R̂−tr-u(g)− πtrR̂
−
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂−te-n(g)

∣∣∣∣. (12)

Theorem 1. Fix decision function g ∈ G. If ` is bounded over g(x)’s image and R̂ŷte-n(g), R̂
+
te-p(g) > 0 for ŷ ∈ {±1},

then R̂PURR(g) is a consistent estimator. R̂PURR(g) is a biased estimator unless for all Xtr-u
i.i.d.∼ ptr-u(x), Xte-u

i.i.d.∼ pte-u(x), and
Xp

i.i.d.∼ ptr-p(x) it holds that Pr[R̂ŷtr-u(g)− (1− πte)R̂
ŷ
tr-p(g) < 0] = 0 and Pr[R̂+

te-u(g)− (1− πte)R̂
+
te-n(g) < 0] = 0.

Optimization Using non-negativity instead of absolute-value correction significantly complicates PURR’s optimization
scheme by necessitating the consideration of four candidate gradients per update.3 In contrast, PURR with absolute-value
correction integrates into a standard ERM framework.

3A complete discussion of PURR’s ERM algorithm with non-negativity correction is in suppl. Section E.2.
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C. Experimental Results Table
This section contains the experimental results tables referenced in Section 7.

Table 2. Inductive misclassification rate mean and standard deviation over 100 trials for MNIST, 20 Newsgroups, & CIFAR10 for different
positive & negative class definitions. Bold denotes a shifted task’s best performing method; for all shifted tasks, our methods’ performance
was statistically better than PUc and nnPU* based on a paired t-test (p < 0.01). Each dataset’s first three experiments have identical
negative (N) & positive-test (Ptest) class definitions. Positive train (Ptrain) specified as “Ptest” denotes no bias. Our three methods – PURR,
PU2aPNU, and PU2wUU – are denoted with †. Additional shifted tasks are in supplemental Section G.2.

N Ptest Ptrain πtr πte
Two-Step (PU2) Baselines Ref.

PURR† aPNU† wUU† PUc nnPU* PNte

M
N

IS
T 0, 2, 4,

6, 8
1, 3, 5,
7, 9

Ptest 0.5 0.5 10.0 (1.3) 10.0 (1.2) 11.6 (1.6) 8.6 (0.8) 5.5 (0.5) ↑

7, 9
0.5 0.5 9.4 (1.5) 7.1 (0.9) 8.3 (1.5) 26.8 (2.4) 35.1 (2.5) 2.8 (0.2)
0.29 0.5 6.8 (0.8) 5.3 (0.6) 6.0 (0.7) 29.2 (2.1) 36.7 (2.7) ↓

0, 2 5, 7 1, 3 0.5 0.5 4.0 (0.8) 3.6 (0.9) 3.1 (0.7) 17.1 (4.6) 30.9 (5.3) 1.1 (0.2)

20
N

ew
s. sci, soc,

talk
alt, comp,
misc, rec

Ptest 0.56 0.56 15.4 (1.3) 14.9 (1.2) 16.7 (2.3) 14.9 (1.0) 14.1 (0.8) ↑

misc, rec
0.56 0.56 17.5 (2.1) 13.5 (0.8) 15.1 (1.3) 23.9 (3.0) 28.8 (1.7) 10.5 (0.4)
0.37 0.56 13.9 (0.7) 12.8 (0.6) 14.3 (0.9) 28.9 (1.8) 28.8 (1.3) ↓

misc, rec soc, talk alt, comp 0.55 0.46 5.9 (1.0) 7.1 (1.1) 5.6 (1.7) 18.5 (4.3) 35.3 (5.2) 2.1 (0.3)

C
IF

A
R

10

Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Ptest 0.4 0.4 14.1 (0.9) 14.2 (1.3) 15.5 (1.6) 13.8 (0.8) 12.3 (0.6) ↑

Plane
0.4 0.4 13.8 (0.9) 14.5 (1.4) 15.1 (1.6) 20.6 (1.5) 27.4 (1.0) 9.8 (0.6)
0.14 0.4 12.1 (0.7) 11.9 (0.7) 12.4 (0.9) 26.7 (1.4) 26.7 (1.0) ↓

Deer, Horse Plane, Auto Cat, Dog 0.5 0.5 14.1 (0.9) 14.9 (1.5) 11.2 (0.8) 33.1 (2.7) 47.5 (2.0) 7.7 (0.4)

Table 3. Inductive misclassification rate mean and standard deviation for the TREC spam email adversarial drift over 100 trials. Our three
methods – PURR, PU2aPNU, and PU2wUU (denoted with †) – all outperformed PUc & nnPU* based on a 1% paired t-test across all
three training priors (πtr).

Train Test
πtr πte

Two-Step (PU2) Baselines Ref.

Pos. Neg. Pos. Neg. PURR† aPNU† wUU† PUc nnPU* PNte

2005
Spam

2005
Ham

2007
Spam

2007
Ham

0.4 0.5 26.5 (2.6) 26.9 (3.1) 25.1 (3.1) 35.2 (11.3) 40.9 (3.1) ↑
0.5 0.5 27.5 (3.4) 28.6 (4.5) 25.1 (3.3) 34.6 (10.2) 40.5 (2.7) 0.6 (0.3)
0.6 0.5 30.8 (4.2) 33.0 (5.7) 29.3 (6.5) 38.5 (10.8) 41.1 (2.9) ↓
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D. Theorems and Proofs
D.1. Proof of Theorem 2

Theorem 2. Let g : Rd → R be an arbitrary decision function and ` : R→ R≥0 be a loss function bounded w.r.t. g then
R̈ŷn (g) is a consistent estimator of R̂ŷn (g).

Proof. Mild assumptions are made about the behavior of the loss and decision functions; the following conditions match
those assumed by Kiryo et al. (2017). Define loss function ` as bounded over some class of real-valued functions G (where
g ∈ G) when the following conditions both hold:

1. ∃Cg > 0 such that supg∈G‖g‖∞ ≤ Cg

2. ∃C` > 0 such that sup|t|≤Cg
maxŷ∈{±1} `(ŷt) ≤ C` .

du Plessis et al. (2014) show that
(1− π)Rŷn (g) = Rŷu (g)− πRŷp (g). (13)

Consider the labeled negative-valued risk estimator with absolute-value correction

R̈ŷn (g) =
∣∣∣R̂ŷn (g)

∣∣∣. (14)

An estimator, θ̂n, over n samples is consistent w.r.t. parameter θ if for all ε > 0 it holds that

lim
n→∞

Pr
[∣∣∣θ̂n − θ∣∣∣ ≥ ε] = 0.

Let estimator Ŷ =
∑k
i=1 βiθ̂(i) be the weighted sum of k consistent estimators with each constant βi 6= 0. Let ε > 0 be

an arbitrary positive constant. If each θ̂(i) converges to within ε
k|βi| > 0 of θ(i) ≥ 0, then Ŷ converges to within ε of∑k

i=1 βiθ(i). Therefore, to prove the consistency of R̈ŷn (g) in Eq. (14), it is sufficient to show that each of its individual
terms is consistent.

Both R̂ŷp (g) and R̂ŷu (g) are empirically estimated directly from a training data set. Let D ∈ {p, u} and XD
i.i.d.∼ pD(x). For

each (independent) X ∼ pD(x), `(ŷg(X)) is an unbiased estimate of RŷD(g). In addition, `(ŷg(X)) < C` <∞ implies
that Var(`(ŷg(X))) <∞. By Chebyshev’s Inequality, R̂ŷD(g) is consistent as

lim
|X |→∞

Pr

[∣∣∣∣∣ 1

|X |
∑
xi∈X

(
`(ŷg(xi))

)
−RŷD(g)

∣∣∣∣∣ ≥ ε
]
<

Var(`(ŷg(X)))

|X |ε2
= 0.

Since R̂ŷn (g) is the weighted sum of consistent estimators, it is consistent as n = min{np, nu} → ∞.

To show R̈ŷn (g) is consistent, it suffices to show that

lim
n→∞

Pr
[∣∣∣R̈ŷn (g)−Rŷn (g)

∣∣∣ ≥ ε] = 0.

Because R̂ŷn (g) is consistent, then as n →∞ it holds that R̂ŷn (g)− ε ≤ Rŷn (g) ≤ R̂ŷn (g) + ε. When R̂ŷn (g) ≥ Rŷn (g) ≥ 0,
then R̈ŷn (g) = R̂ŷn (g) (i.e., absolute value has no effect) so

0 ≤ R̈ŷn (g)−Rŷn (g) ≤ ε.

Consider the alternate possibility where R̂ŷn (g) < Rŷn (g). If R̂ŷn (g) ≥ 0 or Rŷn (g) = 0, then absolute-value correction again
has no effect on the estimation error (i.e., remains ≤ε). Lastly, when R̂ŷn (g) < 0 and Rŷn (g) > 0, the estimation error strictly
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decreases as

errR̂ =
∣∣∣R̂ŷn (g)−Rŷn (g)

∣∣∣
= −R̂ŷn (g) +Rŷn (g) Since R̂ŷn (g) < 0 and Rŷn (g) > 0

=
∣∣∣R̂ŷn (g)

∣∣∣+Rŷn (g) Again since R̂ŷn (g) < 0

= R̈ŷn (g) +Rŷn (g) < ε

so

errR̈ =
∣∣∣∣∣∣R̂ŷn (g)

∣∣∣−Rŷn (g)
∣∣∣

=:
∣∣∣R̈ŷn (g)−Rŷn (g)

∣∣∣
< R̈ŷn (g) +Rŷn (g) < ε Since R̂ŷn (g) < 0 and Rŷn (g) > 0. (15)

The above shows that as n →∞, it always holds that
∣∣∣R̈ŷn (g)−Rŷn (g)

∣∣∣ ≤ ε for arbitrary ε > 0 making R̈ŷn (g) consistent.

D.2. Proof of Theorem 3

Theorem 3. Let g : Rd → R be an arbitrary decision function and ` : R→ R≥0 be a loss function bounded
w.r.t. g. Let ŷ ∈ {±1} be a predicted label. Define Xtr-u := {xi}ntr-u

i=1

i.i.d.∼ ptr-u(x), and restrict πtr ∈ [0, 1). Define
R̃ŷn-u(g) :=

1
ntr-u

∑
xi∈Xtr-u

σ̂(xi)`(ŷg(xi))
1−πtr

. Let σ̂ : Rd → [0, 1] in hypothesis set Σ̂ . When σ̂(x) = ptr(Y =−1|x), R̃ŷn-u(g) is
an unbiased estimator of Rŷn (g). When the concept class of functions that defines ptr(Y =−1|x) is probably approximately
correct (PAC) learnable by some PAC-learning algorithm A that selects σ̂ ∈ Σ̂ , then R̃ŷn-u(g) is a consistent estimator
of Rŷn (g).

Proof. Consider first the case that σ̂(x) = ptr(Y =−1|x):

E
Xtr-u

i.i.d.∼ptr-u(x)

[
R̃ŷn-u(g)

]
= E

Xtr-u
i.i.d.∼ptr-u(x)

[
1

ntr-u

∑
Xi∈Xtr-u

`(ŷg(Xi))σ̂(Xi)

1− πtr

]

=
1

ntr-u

ntr-u∑
i=1

EX∼ptr-u(x)

[
`(ŷg(X))σ̂(X)

1− πtr

]
Linearity of expectation

= EX∼ptr-u(x)

[
`(ŷg(X))σ̂(X)

1− πtr

]
= EX∼ptr-u(x)

[
`(ŷg(X))ptr(Y =−1|X)

ptr(Y =−1)

]
=

∫
x

`(ŷg(x))
ptr(Y =−1|x)ptr-u(x)

ptr(Y =−1)

= EX∼ptr-n(x)[`(ŷg(X))] Bayes’ Rule

=: Rŷtr-n(g),

satisfying the definition of unbiased.

Next we consider whether R̃ŷn-u(g) is a consistent estimator of Rŷn (g). For the complete definition of PAC learnability that
we use here, see (Mohri et al., 2012). We provide a brief sketch of the definition below.

We assume that true posterior distribution, ptr(Y =−1|x) is in some concept class C of functions — i.e., concepts —
mapping Rd to [0, 1]. Let σ̂S ∈ Σ̂ be the hypothesis selected by learning algorithm A after being provided a training
sample S of size n = min {np, ntr-u}.4 Consider the realizable setting so C’s PAC learnability entails that for all ε, δ > 0,

4No restrictions are placed on A other than its existence and that selected hypothesis σ̂S satisfies Eq. (16).
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there exists an n′ such that for all n > n′,

Pr

[
EX∼ptr-u(x)[|σ̂S(X)− ptr(Y = −1|X)|] > ε

]
< δ. (16)

Therefore, as n →∞, σ̂’s expected (absolute) error w.r.t. ptr(Y =−1|x) decreases to 0 making R̃ŷn-u(g) asymptotically
unbiased. To demonstrate consistency, it is necessary to show that for all ε > 0:

lim
n→∞

Pr
[∣∣∣R̃ŷn-u(g)−Rŷtr-n(g)

∣∣∣ > ε
]

= 0.

Let sup|t|≤‖g‖∞ `(ŷt) ≤ C`, where ‖g‖∞ is the Chebyshev norm of g for x ∈ Rd. Bounding the loss’s magnitude bounds
the variance when estimating the surrogate negative risk of X ∼ ptr-u(x) such that 1

(1−πtr)2
Var(σ̂(X)`(ŷg(X))) ≤ Cvar

where Cvar ∈ R≥0 and πtr ∈ [0, 1).

Since R̃ŷn-u(g) is asymptotically unbiased, then from Chebyshev’s inequality for ε > 0:

lim
n→∞

Pr
[∣∣∣R̃ŷn-u(g)−Rŷtr-n(g)

∣∣∣ ≥ ε] ≤ Var(R̃ŷn-u(g))

ε2

=
1

(1− πtr)2ε2

ntr-u∑
i=1

Var
(
σ̂(X)`(ŷg(X))

ntr-u

)
Linearity of independent r.v. var.

≤ ntr-uCvar

n2tr-uε
2

= 0 L’Hôpital’s Rule.

D.3. Proof Regarding Estimating πte

We are not aware of an existing technique to directly estimate the test distribution’s positive prior πte given only Xp, Xtr-u,
and Xte-u. We propose the following that uses an additional classifier.

Theorem 4. Define Xu := {xi}nu
i=1

i.i.d.∼ pu(x). Let Xn = {xi ∈ Xu : Qi = 1} be a set where Qi is a Bernoulli random
variable with probability of success qi = p(Y = −1|xi). Then Xn is a SCAR sample w.r.t. negative class-conditional
distribution pn(x) = p(x|Y =−1).

Proof. By Bayes’ Rule

pn(x) ∝ p(Y =−1|x)pu(x)

Each xi ∈ Xu is sampled from pu(x). By including xi in Xn only if Qi = 1, then xi’s effective sampling probability is
p(Y = −1|xi)p(x). Bayes’ Rule includes prior inverse 1

1−π , where π = p(Y =+1); this constant scalar can be ignored
since it does not change whether Xn is unbiased, i.e., it does not affect relative probability.

Commentary Theorem 4 states the property generally, but consider it over aPU’s training distribution. Probabilistic
classifier σ̂ is used as a surrogate for ptr(Y =−1|x). Rather than soft weighting the samples like in Theorem 3’s proof,
sample inclusion in the negative set is a hard “in-or-out” decision. This does not change the sample’s statistical properties,
but it allows us to create an unweighted negative set, we denote Xtr-n.

By Eq. (5)’s assumption, Xtr-n is representative of samples from the negative class-conditional distribution
pn(x) = ptr-n(x) = pte-n(x). Given a representative labeled set from the test distribution, well-known positive-unlabeled
prior estimation techniques (Ramaswamy et al., 2016; du Plessis et al., 2017) can be used without modification using Xtr-n
and Xte-u. Be aware that these PU prior estimation methods would return the negative-class’s prior, pte(Y =−1), while our
risk estimators use the positive class’s prior, πte = 1− pte(Y =−1).

We provide empirical results regarding the effect of inaccurate prior estimation’s in Section G.7.
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D.4. Proof of Theorem 1

The definition of “bounded loss” is identical to the proof of Theorem 2.

Proof. Consider first whether PURR is unbiased. du Plessis et al. (2014) observe that the negative labeled risk can be found
via decomposition where

(1− π)Rŷn (g) = Rŷu (g)− πRŷp (g). (17)

The positive labeled risk similarly decomposes as

πRŷp (g) = Rŷu (g)− (1− π)Rŷn (g). (18)

Applying these decompositions along with Eq. (5)’s assumption yields an unbiased version of PURR:

R̂uPURR(g) = R̂+
te-u(g)− (1− πte)

R̂+
tr-u(g)− πtrR̂

+
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂+

te-n(g)︸ ︷︷ ︸
πteR̂

+
te-p(g)

+(1− πte)
R̂−tr-u(g)− πtrR̂

−
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂−te-n(g)

. (19)

Since ∀t`(t) ≥ 0, it always holds that labeled risk RŷD(g) ≥ 0. When using risk decomposition (i.e., Eqs. (17) and (18))
to empirically estimate a labeled risk, it can occur that R̂ŷD(g) < 0. Absolute-value correction addresses these obviously
implausible risk estimates. The unrolled definition of the PURR risk estimator with absolute-value correction is:

R̂PURR(g) =

∣∣∣∣∣ R̂+
te-u(g)− (1− πte)

∣∣∣∣ R̂+
tr-u(g)− πtrR̂

+
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂+

te-n(g)

∣∣∣∣
︸ ︷︷ ︸

πteR̂
+
te-p(g)

∣∣∣∣∣+ (1− πte)

∣∣∣∣∣ R̂−tr-u(g)− πtrR̂
−
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂−te-n(g)

∣∣∣∣∣. (20)

Clearly, R̂PURR(g) ≥ R̂uPURR(g). For R̂PURR(g) to be unbiased, equality must strictly hold. This only occurs if the
absolute-value is never needed, i.e., has probability 0 of occurring.

Next consider whether PURR is consistent. Theorem 2 showed that R̈ŷn (g) is consistent. Following the same logic in
Theorem 2’s proof, it is straightforward to see that when performing decomposition on Rŷp (g), R̈ŷp (g) is also consistent.

It follows by induction that PURR (and any similarly-defined recursive risk estimator) is consistent. Theorem 2 shows the
consistency of the base case where both composite terms (e.g., Rŷu (g) and RŷB(g) in Eq. (8)) were estimated directly from
training data. By induction, it is again straightforward from Theorem 2 that any decomposed term (e.g., RŷA(g) in Eq. (8))
formed from the sum of consistent estimators must be itself consistent.

Theorem 2 further demonstrated that applying absolute-value correction does not affect the consistency of a risk estimator’s.
Therefore, any recursive risk estimator with absolute-value correction is consistent. PURR’s consistency is just a single,
specific example of this general property.

E. Non-Negativity Correction Empirical Risk Minimization Algorithms
Kiryo et al. (2017)’s non-negativity correction algorithm uses the max{0, ·} term to ensure a plausible risk estimate. Unlike
our simpler absolute-value correction described in Section 3, Kiryo et al.’s non-negativity correction requires a custom
empirical risk minimization (ERM) procedure. This section presents the custom ERM algorithms required if non-negativity
correction is used for our two-step methods and PURR.

E.1. Two-Step, Non-Negativity ERM Algorithm

The weighted-unlabeled, unlabeled (wUU) risk estimator with non-negativity correction is defined as:

R̂nn-wUU(g) := max
{

0, R̂+
te-u(g)− (1− πte)R̃

+
n-u(g)

}
+ (1− πte)R̃

−
n-u(g). (21)
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The arbitrary-positive, negative, unlabeled (aPNU) risk estimator with non-negativity correction is similarly defined as:

R̂nn-aPNU(g) := (1− ρ)πteR
+
p (g) + (1− πte)R̃

−
n-u(g) + ρmax

{
0, R+

te-u(g)− (1− πte)R̃
+
n-u(g)

}
. (22)

Like their counterparts with absolute-value correction, both R̂nn-wUU(g) and R̂nn-aPNU(g) are consistent estimators.

Algorithm 2 shows the custom ERM framework for R̂nn-wUU(g) and R̂nn-aPNU(g) with integrated “defitting.” The algorithm
learns parameters θ for decision function g. The non-negativity correction occurs whenever R̂+

te-u(g)− (1− πte)R̃
+
n-u(g) < 0

(see line 7). The basic algorithm is heavily influenced by the stochastic optimization algorithm proposed by Kiryo et al.
(2017).

Algorithm 2 wUU and aPNU with non-negativity correction custom ERM procedure

Input: Datasets (Xp, X̃n,Xte-u), hyperparameters (γ, η) and risk estimator R̂TS(g) ∈ {R̂nn-wUU(g), R̂nn-aPNU(g)}
Output: Decision function g’s parameters θ

1: Select SGD-like optimization algorithm A
2: while Stopping criteria not met do
3: Shuffle (Xp, X̃n,Xte-u) into N batches
4: for each minibatch (X (i)

p , X̃ (i)
n ,X (i)

te-u) do
5: if R̂+

te-u(g)− (1− πte)R̃
+
n-u(g) < 0 then

6: Set gradient −∇θ
(
R̂+

te-u(g)− (1− πte)R̃
+
n-u(g)

)
7: Update θ by A with attenuated learning rate γη
8: else
9: Set gradient∇θR̂TS(g)

10: Update θ by A with default learning rate η
11: return θ minimizing validation loss

Algorithm 2 terminates after a fixed epoch count (see Table 9 for the number of epochs used for each dataset). Although not
shown in Algorithm 2, the validation loss is measured at the end of each epoch. The algorithm returns the model parameters
with the lowest validation loss.

E.2. PURR Non-Negativity ERM Algorithm

For readability and compactness, let [a]+ := max{0, a}. PURR with non-negativity correction is defined as

R̂nn-PURR(g) :=

[
R̂+

te-u(g)− (1− πte)

[
R̂+

tr-u(g)− πtrR̂
+
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂+

te-n(g)

]
+︸ ︷︷ ︸

πteR̂
+
te-p(g)

]
+

+ (1− πte)

[
R̂−tr-u(g)− πtrR̂

−
tr-p(g)

1− πtr︸ ︷︷ ︸
R̂−te-n(g)

]
+

. (23)

Like R̂PURR(g) from Section 6, R̂nn-PURR(g) is a consistent estimator.

When a risk estimator only has a single term that can be negative (like nnPU, R̂nn-wUU(g), and R̂nn-aPNU(g)), the custom
non-negativity ERM framework is relatively straightforward as shown in Algorithm 2. However, R̂nn-PURR(g) has three
non-negativity corrections — one of which is nested inside another non-negativity correction.

Algorithm 3 details R̂nn-PURR(g)’s custom ERM procedure with learning rate η. Each non-negativity correction is individually
checked with the ordering critical. The optimizer minimizes risk on positive set Xp by both decreasing R̂+

p (g) and
increasing R̂−p (g). In contrast, each unlabeled example’s minimizing risk is uncertain. This creates explicit tension
and uncertainty for the optimizer. This enforced trade-off over the best unlabeled risk commonly delays or counteracts
unlabeled set overfitting. As such, overfitting is most likely with labeled (positive) data. When that occurs, R̂−tr-p(g)
increases significantly making R̂−te-n(g) most likely to be negative so its non-negativity is checked first (line 5). Nested
term R̂+

te-n(g) receives second highest priority since whenever its value is implausible, any term depending on it, e.g., R̂+
te-p(g),

is meaningless. By elimination, R̂+
te-p(g) has lowest priority.
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Algorithm 3 applies non-negativity correction by negating risk R̂ŷA(g)’s gradient (see Eq. (8)). This addresses overfitting
by “defitting” g. A large negative gradient can push g into a poor parameter space so hyperparameter γ ∈ (0, 1] limits the
amount of correction by attenuating gradient magnitude.

Algorithm 3 PURR with non-negativity correction custom ERM procedure
Input: Datasets (Xp,Xtr-u,Xte-u) & hyperparameters (γ, η)
Output: Decision function g’s parameters θ

1: Select SGD-like optimization algorithm A
2: while Stopping criteria not met do
3: Shuffle (Xp,Xtr-u,Xte-u) into N batches
4: for each minibatch (X (i)

p ,X (i)
tr-u ,X

(i)
te-u) do

5: if R̂−te-n(g) < 0 then
6: Use A to update θ with −γη∇θR̂−te-n(g)

7: else if R̂+
te-n(g) < 0 then

8: Use A to update θ with −γη∇θR̂+
te-n(g)

9: else if R̂+
te-p(g) < 0 then

10: Use A to update θ with −γη∇θR̂+
te-p(g)

11: else
12: Use A to update θ with η∇θR̂nn-PURR(g)
13: return θ minimizing validation loss

F. Detailed Experimental Setup
This section details the experimental setup used to collect the results in Sections 7 and G.

F.1. Reproducing our Experiments

Our implementation is written and tested in Python 3.6.5 and 3.7.1 using the PyTorch neural network framework
versions 1.3.1 and 1.4. The source code is available at: https://github.com/ZaydH/udl arbitrary pu. The repository includes
file requirements.txt that details Python package dependency information.

To run the program, invoke:

python driver.py ConfigFile

where ConfigFile is a yaml-format text file specifying the experimental setup. Repository folder “src/configs”
contains the configuration files for the experiments in Sections 7, G.1, and G.4. Prior probability shifts can be made by
modifying the configuration files (see yaml fields train prior and test prior).

Datasets Our program automatically retrieves all necessary data. Synthetic data is generated by the program itself.
Otherwise the dataset is downloaded automatically from the web. If you have trouble downloading any datasets, please
verify that your network/firewall ports are properly configured.

F.2. Class Definitions

F.2.1. PARTIALLY AND FULLY DISJOINT POSITIVE DISTRIBUTION SUPPORTS

Section 7.2’s experimental setups are very similar to Hsieh et al. (2019)’s experiments for positive, unlabeled, biased-negative
learning. We even follow Hsieh et al.’s label partitions. The basic rationale motivating the splits are:

• MNIST: Odd (positive class) vs. even (negative class) digits. Each digit’s frequency in the original dataset is
approximately 0.1 making each class’s target prior 5 ∗ 0.1 = 0.5.

• 20 Newsgroups: As its name suggests, the 20 Newsgroups dataset consists of 20 disjoint labels. Categories are formed
by partitioning those 20 labels into 7 groups based on the corresponding text documents’ general theme. Our classes

https://github.com/ZaydH/udl_arbitrary_pu
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are formed by splitting the categories into two disjoint sets. Specifically, the positive-test class consists of documents
with labels 0 to 10 in the original dataset. The negative class is comprised of documents whose labels in the original
dataset are 11-19. This split’s actual positive prior probability is approximately 0.56.5

• CIFAR10: Inanimate objects (positive class) vs. animals (negative class). CIFAR10 is a multiclass dataset with ten
labels. Each label is equally common in the training and test set, i.e., has prior 0.1. Since CIFAR10’s positive-test class
has exactly four labels (e.g., plane, automobile, truck, and ship), the positive-test prior is 4 ∗ 0.1 = 0.4.

For this experiment set, the distribution shift between train and test is premised on new subclasses emerging in the test
distribution (e.g., due to novel adversarial attacks or systematic failure to collect data on a positive subpopulation in the
original dataset).

F.2.2. TREC SPAM CLASSIFICATION

As noted previously, PU learning has been applied to multiple adversarial domains including opinion
spam (Hernández Fusilier et al., 2013; Li et al., 2014; Zhang et al., 2017; Zhang et al., 2019). We use spam classifi-
cation as a vehicle for testing our method in an adversarial domain.

Clearly, email spam classification is not a scenario where PU learning would generally be applied. Labeled data for both
classes is generally plentiful (especially at the corporate level), and for most modern email systems, spam classification is a
solved problem. For our purposes, spam email provides a good avenue for demonstrating our methods’ performance in an
adversarial setting for multiple reasons, including:

• The positive class (i.e., spam) evolves significantly faster than the negative class (i.e., not spam or “ham”).

• Our fixed negative class-conditional distribution assumption (i.e., Eq. (5)) will not explicitly hold. This more closely
represents what will be encountered “in-the-wild.”

• Public spam/ham datasets exist eliminating the need to use our own proprietary adversarial learning dataset.

• Email dates provide a realistic criteria for partitioning the training and test datasets.

To be clear, what we propose here is not intended as a plausible, deployable spam classifier. Rather, we show that our
methods apply to real-world adversarial domains.

Dataset Construction The Text REtrieval Conference (TREC) is organized annually be the United States’ National
Institute of Standards and Technology (NIST) to support information retrieval research (TREC, 2019). In 2005, 2006,
and 2007, TREC arranged annual spam classifier competitions where they released corpuses of spam and ham (i.e., not
spam) emails.

As detailed in Table 5, the training set consisted of the TREC 2005 (TREC05) email dataset6 while the test set was the
TREC 2007 (TREC07) email dataset7. Basic statistics for the two datasets appear in Table 4.

The two sets of emails come from different domains. TREC05’s ham emails derive largely from the Enron dataset. In
contrast, TREC07’s emails were received by a particular server between April and July 2007. Many of the ham emails were
received by the University of Waterloo where the datasets were curated.

Due to the extended time required to encode all emails using the ELMo embedder (see Section F.6), we consider the first
10,000 emails from each dataset as defined by the dataset’s full/index file.

F.2.3. IDENTICAL POSITIVE SUPPORTS WITH BIAS

Table 6 defines the positive and negative classes for the 10 LIBSVM datasets used in Section G.4. Label “+1” always
corresponded to the positive class. In two-class (binary) datasets, the other label was the negative class. For multiclass
datasets (e.g., connect4), whichever other class had the most examples was used as the negative class.

5We used the latest version of the 20 Newsgroups dataset with duplicates and cross-posts removed.
6The raw TREC05 emails can be downloaded from https://plg.uwaterloo.ca/˜gvcormac/treccorpus/.
7The raw TREC07 emails can be downloaded from https://plg.uwaterloo.ca/˜gvcormac/treccorpus07/.

https://trec.nist.gov/data/spam.html
https://plg.uwaterloo.ca/~gvcormac/treccorpus/
https://plg.uwaterloo.ca/~gvcormac/treccorpus07/
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Table 4. TREC05 & TREC07 dataset statistics
TREC05 TREC07

Dataset Size 92,189 75,419
Approx. % Spam ˜57% ˜66%

Table 5. TREC spam email classification datasets

Class Definition

Pos. Train TREC05 Spam
Neg. Train TREC05 Ham
Pos. Test TREC07 Spam
Neg. Test TREC07 Ham

F.3. Training, Validation, and Test Set Sizes

Table 7 lists the default size of each dataset’s positive (Xp), unlabeled train (Xtr-u), unlabeled test (Xte-u), and inductive test
sets. All LIBSVM datasets (e.g., susy, a9a, etc. in Section G.4) used the dataset sizes defined by Sakai & Shimizu (2019).
The separate validation set was one-fifth Table 7’s training set sizes. Each learner observed identical dataset splits in each
trial.

Special inductive test set sizes were needed for two of Section 7.2’s disjoint positive-support experiments. To understand
why, consider the MNIST disjoint-support experiment (i.e., the fourth MNIST row in Table 2) where the negative class (N)
is comprised of labels {0, 2} and the positive-test class (Ptest) is composed of labels {5, 7}. Each label has approximately
1,000 examples in the dedicated test set meaning there are approximately 4,000 total test examples between the negative and
positive classes. However, MNIST’s default inductive test set size (nTest) is 5,000 (see Table 7). Rather than duplicating test
set examples, we reduced MNIST’s nTest to 1,500 for the disjoint positive-support experiments only. 20 Newsgroups has the
same issue so its disjoint-positive support nTest was also reduced as specified in Table 8. To be clear, for all other datasets
and experimental setups in Sections 7.2, 7.3, G.1, and G.4, Table 7 applies.

MNIST, 20 Newsgroups, and CIFAR10 have predefined test sets, which we exclusively used to collect the inductive results.
They were not used for training or validation. Only some LIBSVM datasets have dedicated test sets, and for those that do,
Sakai & Shimizu (2019) do not specify whether the test set was held out in their experiments. When applicable, we merge
the LIBSVM train and test datasets together as if there was only a single monolithic training set. Xp, Xtr-u, Xte-u and the
inductive test set are independently sampled at random from this monolithic set without replacement.

Since the PUc formulation is convex, Sakai & Shimizu train their final model on the combined training and validation set.

F.4. CIFAR10 Image Representation

Each CIFAR10 (Krizhevsky et al., 2014) image is 32 pixels by 32 pixels with three (RGB) color channels (3,072 dimensions
total). PUc specifies a convex model so it cannot be used to train (non-convex) deep convolutional networks directly. To
ensure a meaningful comparison, we leveraged the DenseNet-121 deep convolutional network architecture pretrained on
1.2 million images from ImageNet (Huang et al., 2017). The network’s (linear) classification layer was removed, and the
experiments used the 1,024-dimension feature vector output by DenseNet’s convolutional backbone.

F.5. 20 Newsgroups Document Representation

The 20 Newsgroups dataset is a collection of internet discussion board posts. The original dataset consisted of 20,000
documents (Lang, 1995); it was pruned to 18,828 documents in 2007 after removal of duplicates and cross-posts (Rennie,
2001). This latest dataset has a predefined split of 11,314 train and 7,532 test documents. Similar to CIFAR10, we use
transfer learning to create a richer representation of each document.

Classic word embedding models like GloVe and Word2Vec yield token representations that are independent of context.
Proposed by Peters et al. (2018), ELMo (embeddings for language models) enhances classic word embeddings by making
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Table 6. Positive & negative class definitions for the LIBSVM datasets in Section G.4

Dataset d
Pos.
Class

Neg.
Class

banana 2 +1 2
cod-rna 8 +1 –1
susy 18 +1 0
ijcnn1 22 +1 –1
covtype.b 54 +1 2
phishing 68 +1 0
a9a 123 +1 –1
connect4 126 +1 –1
w8a 300 +1 –1
epsilon 2,000 +1 –1

Table 7. Each dataset’s default training set sizes. LIBSVM denotes all datasets downloaded directly from (Chang & Lin, 2011) and used
in Section G.4. All quantities in the table do not include the validation set.

Dataset np ntr-u nte-u nTest

MNIST 1,000 5,000 5,000 5,000
20 Newsgroups 500 2,500 2,500 5,000
CIFAR10 1,000 5,000 5,000 3,000
TREC Spam 500 1,250 1,250 1,000
Synthetic 1,000 1,000 1,000 N/A
LIBSVM 250 583 583 2,000

the token representations context dependent. We use ELMo to encode each 20 Newsgroup document as described below.

ELMo’s embedder consists of three sequential layers — first a character convolutional neural network (CNN) provides
subword information and improves unknown word robustness. The CNN’s output is then fed into a two-layer, bidirectional
LSTM. The output from each of ELMo’s layers is a 1,024-dimension vector. For a token stream of length m, the output of
ELMo’s embedder would be a tensor of size 〈#Layers× dlayer × #Tokens〉— in this case 〈3× 1024×m〉.

Like Hsieh et al. (2019) who used this encoding scheme for positive, unlabeled, biased-negative (PUbN) (PUbN) learning,
we used Rücklé et al. (2018)’s sentence representation encoding scheme, which takes the minimum, maximum, and average
value along each ELMo layer’s output dimension. The dimension of the resulting document encoding is:

|{max,min, avg}| · #Layers · dlayer = 3 · 3 · 1024 = 9, 216.

When documents are encoded serially, each document implicitly contains information about all preceding documents. Put
simply, the order documents are processed affects each document’s final encoding. For consistency, all 20 Newsgroups
experiments used a single identical encoding for all learners.

The Allen Institute for Artificial Intelligence has published multiple pretrained ELMo models. We used the ELMo model
trained on a 5.5 billion token corpus — 1.9 billion from Wikipedia and 3.6 billion from a news crawl. We chose this version
because ELMo’s developers report that it was the best performing.

F.6. TREC Email Representation

The TREC05 and TREC07 emails are encoded using the ELMo embedder identical to 20 Newsgroups. See Section F.5
above for the details.

F.7. Models and Hyperparameters

This section reviews the experiments’ hyperparameter methodology.
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Table 8. Smaller MNIST and 20 Newsgroups inductive test set sizes, i.e., nTest, used in the disjoint-support experiments.

Dataset nTest

MNIST 3,000
20 Newsgroups 1,500

As specified by its authors, PUc’s hyperparameters were tuned via importance-weighted cross validation (IWCV) (Sugiyama
et al., 2007). PUc’s author-supplied implementation includes a built-in hyperparameter tuning architecture that we used
without modification.

Our hyperparameters and best-epoch weights were selected using the validation loss (using the associated risk estimation)
on a validation set. Our experiments’ hyperparameters can be grouped into two categories. First, some hyperparame-
ters (e.g., number of epochs) apply to most/all learners (excluding PUc). The second category’s hyperparameters are
individualized to each learner and were used for all of that learner’s experiments on the corresponding dataset.

Table 9 enumerates the general hyperparameter settings that applied to most/all learners. Batch sizes were selected based
on the dataset sizes (see Tables 7 and 8) while the epoch count was determined after monitoring the typical time required
for the best validation loss to stop (meaningfully) changing. A grid search was used to select each dataset’s layer count;
we specifically searched set {1, 2, 3} for g and {0, 1, 2} for σ̂. With the exception of the output layer, each linear layer
used ReLU activation and batch normalization (Ioffe & Szegedy, 2015). The selected layer count minimized the median
validation loss across all learners.

Tables 10, 11, and 12 enumerate the final hyperparameter settings for our models, nnPU, and the positive-negative
(PN) learners respectively. The selected hyperparameter setting had the best average validation loss across 10 independent
trials. We also used a grid search for these parameters. The search space was: learning rate η ∈ {10−5, 10−4, 10−3}, weight
decay λ ∈ {10−4, 10−3, 5 · 10−3, 10−2, 10−1}, and (where applicable) gradient attenuator γ ∈ {0.1, 0.5, 1.0}8.

By monitoring the (implausible) validation loss during Step #1, we observed overfitting when using the rich ELMo repre-
sentations for the 20 Newsgroups and TREC email datasets. To address this, we added a dropout layer (with probability
p = 0.5) before the input to each linear (i.e., fully-connected) layer. It is uncommon to use dropout even on the input
dimension. However, we deliberately made this choice to still allow dropout even if we use a strictly linear-in-parameter
model. Dropout was not used for any other dataset.

8Hyperparameter γ only applies when using Kiryo et al. (2017)’s non-negativity correction. γ is not considered by our absolute-value
correction.



Positive-Unlabeled Learning with Arbitrarily Non-Representative Labeled Data

Table 9. General hyperparameter settings

Dataset #Epoch Layer Count Batch Size Dropout?
g(x) σ̂(x) g(x) σ̂(x) PNte

MNIST 200 3 1 5,000 5,000 4,000
20 Newsgroups 200 1 1 5,000 2,500 2,000 X
CIFAR10 200 2 1 10,000 2,500 1,500
TREC Spam 200 1 0 1,000 1,000 1,000 X
Synthetic 100 N/A N/A 2,000 750 500
banana 500 3 2 500 750 500
cod-rna 500 2 1 500 750 500
susy 500 2 2 500 750 500
ijcnn1 500 2 2 500 750 500
covtype.b 500 3 1 500 750 500
phishing 500 2 2 500 750 500
a9a 500 2 2 500 750 500
connect4 500 2 1 500 750 500
w8a 500 2 1 500 750 500
epsilon 500 1 0 500 750 500

Table 10. Dataset-specific hyperparameter settings for our aPU learners. Hyperparameter γ∗ only applies when using Kiryo et al. (2017)’s
non-negativity correction instead of our absolute-value correction.

Dataset PURR σ̂ aPNU wUU

η λ γ∗ η λ γ∗ η λ γ∗ η λ γ∗

MNIST 1E−3 1E−3 1 1E−3 5E−3 1 1E−3 1E−3 1 1E−4 5E−3 1
20 Newsgroups 1E−4 1E−4 0.5 1E−3 5E−3 1 1E−4 1E−4 0.5 1E−4 1E−4 0.5
CIFAR10 1E−3 1E−3 1 1E−3 5E−3 1 1E−3 1E−4 0.5 1E−3 1E−2 0.5
TREC Spam 1E−3 1E−2 1 1E−3 1E−1 1 1E−3 1E−3 0.5 1E−3 1E−2 0.5
Synthetic 1E−2 0 1 1E−2 0 1 1E−2 0 1 1E−2 0 1
banana 1E−4 1E−3 0.1 1E−4 5E−3 1 1E−5 1E−3 0.5 1E−3 1E−3 0.1
cod rna 1E−4 1E−3 0.5 1E−3 1E−4 1 1E−3 1E−3 0.1 1E−4 1E−3 0.5
susy 1E−5 1E−2 0.5 1E−4 5E−3 1 1E−5 1E−3 0.1 1E−5 1E−4 0.5
ijcnn1 1E−4 1E−3 0.5 1E−4 5E−3 1 1E−4 1E−2 0.5 1E−4 1E−2 0.5
covtype.b 1E−5 1E−3 1 1E−3 1E−4 1 1E−5 1E−3 0.1 1E−4 1E−3 1
phishing 1E−5 1E−3 0.5 1E−3 1E−4 1 1E−5 1E−3 0.5 1E−5 1E−3 0.5
a9a 1E−5 1E−4 1 1E−4 5E−3 1 1E−5 1E−4 0.5 1E−4 1E−3 0.5
connect4 1E−4 1E−3 0.5 1E−3 1E−4 1 1E−4 1E−4 0.5 1E−3 1E−2 0.5
w8a 1E−5 1E−4 0.5 1E−3 1E−4 1 1E−5 1E−3 0.5 1E−5 1E−2 0.5
epsilon 1E−5 1E−2 0.1 1E−3 1E−4 1 1E−5 1E−2 0.1 1E−4 1E−2 0.1
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Table 11. Dataset-specific hyperparameter settings for nnPU.

Dataset nnPUte∪ tr nnPUte

η λ γ η λ γ

MNIST 1E−3 1E−3 0.5 1E−3 1E−3 0.5
20 Newsgroups 1E−3 1E−3 0.5 1E−3 1E−2 0.5
CIFAR10 1E−4 1E−3 0.1 1E−4 1E−3 0.1
TREC Spam 1E−3 1E−2 0.1 1E−3 1E−2 0.1
Synthetic 1E−2 0 1 1E−2 0 1
banana 1E−3 1E−3 1 1E−4 1E−3 0.5
cod rna 1E−3 1E−3 0.5 1E−3 1E−3 0.5
susy 1E−5 1E−2 0.1 1E−3 1E−3 0.5
ijcnn1 1E−3 1E−2 0.5 1E−3 1E−3 0.5
covtype.b 1E−3 1E−2 0.5 1E−3 1E−2 0.5
phishing 1E−3 1E−2 0.5 1E−3 1E−2 0.5
a9a 1E−3 1E−2 1 1E−3 1E−3 0.5
connect4 1E−3 1E−3 0.1 1E−3 1E−4 1
w8a 1E−3 1E−3 0.5 1E−3 1E−3 0.5
epsilon 1E−3 1E−3 0.5 1E−3 1E−3 0.5

Table 12. Dataset-specific hyperparameter settings for the positive-negative (PN) learners

Dataset PNte PNtr

η λ η λ

MNIST 1E−3 1E−3 1E−3 1E−3
20 Newsgroups 1E−3 1E−3 1E−3 1E−2
CIFAR10 1E−4 1E−3 1E−3 1E−2
TREC Spam 1E−3 1E−2 1E−3 1E−2
Synthetic 1E−2 0 1E−2 0
banana 1E−4 1E−2 1E−4 1E−3
cod rna 1E−3 1E−4 1E−3 1E−4
susy 1E−4 1E−2 1E−5 1E−2
ijcnn1 1E−3 1E−3 1E−3 1E−2
covtype.b 1E−3 1E−2 1E−3 1E−2
phishing 1E−3 1E−3 1E−3 1E−2
a9a 1E−5 1E−2 1E−3 1E−3
connect4 1E−3 1E−2 1E−3 1E−3
w8a 1E−4 1E−4 1E−4 1E−3
epsilon 1E−4 1E−3 1E−3 1E−3
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G. Additional Experimental Results
This section includes experiments we consider insightful but for which there was insufficient space to include in the paper’s
main body. With the exception of the synthetic data experiments (see Section G.1) which focus on visually illustrative
examples to build intuitions, performance evaluation is based on the inductive misclassification rate since it approximates
the expected zero-one loss for an unseen example.

G.1. Illustration using Synthetic Data

This section uses synthetic data to visualize scenarios where our algorithms succeed in spite of challenging conditions.

For simplicity, σ̂ and g are linear-in-parameter models optimized by L-BFGS. PUc also trains a linear-in-parameter models
without Gaussian kernels. Since all methods use the same classifier architecture, our methods’ performance advantage
comes solely from algorithmic design.

Synthetic data were generated from multivariate Gaussians N (µ, I2) with different means µ and identity covariance I2. In
all experiments, the positive-test and negative class-conditional distributions were

pte-p(x) =
1

2
N
([
−2 −1

]
, I2
)
+

1

2
N
([
−2 1

]
, I2
)

pn(x) =
1

2
N
([

2 −1
]
, I2
)
+

1

2
N
([

2 1
]
, I2
)
.

πte = πtr = 0.5 makes the ideal test decision boundary x1 = 0. The datasets in Figure 3 vary only in the positive-train
class-conditional distribution, denoted ptr-(·)-p(x) where “·” is subfigure a to c.

Figure 3a’s positive-train class-conditional distribution is

ptr-(a)-p(x) =
1

2
N
([

6 −1
]
, I2
)
+

1

2
N
([

6 1
]
, I2
)
, (24)

making the training distribution’s optimal separator linear. PUc performed poorly on this setup for two reasons: covariate
shift’s assumption ptr(y|x) = pte(y|x) does not hold, and the positive-train supports are functionally disjoint so importance
function w(x) is practically unbounded. Our methods all performed well, even PU2aPNU where inclusion of Xp’s risk had
minimal impact since for most good boundaries, Xp’s risk was an inconsequential penalty.

Figure 3b adds to ptr-(a)-p(x) a third Gaussian where

ptr-(b)-p(x) =
2

3
ptr-(a)-p(x) +

1

3
N
([
−6 0

]
, I2
)
, (25)

so the training distribution’s optimal separator is non-linear. PUc performs poorly for the same reasons described above. The
new centroid does not meaningfully affect PURR. The most important takeaway is that linear σ̂’s inability to partition Xtr-u
has limited impact on PU2wUU and PU2aPNU; Xtr-u’s misclassified examples act as a fixed penalty that only slightly offsets
the two-step decision boundaries.

Figure 3c uses the worst-case positive-train class-conditional, i.e., ptr-(c)-p(x) = pn(x), making positive (labeled) data
statistically identical to the (train and test) negative class-conditional distribution. Its training marginal ptr-u(x) is not
separable – linearly or otherwise. Unlike PUc, our methods learned correct boundaries, which shows their robustness.
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(c) ptr-(c)-p(x) = pn(x)

Xp Ideal
Xtr-u Pos. PURR (ours)
Xtr-u Neg. PU2aPNU (ours)
Xte-u Pos. PU2wUU (ours)
Xte-u Neg. PUc

Figure 3. Predicted linear decision boundaries for three synthetic datasets (np = ntr-u = nte-u = 1, 000). Our three methods – PURR,
PU2aPNU, and PU2wUU – are robust to non-linear & non-existent training class boundaries, but PUc fails in all three cases. Ideal
boundary: x1 = 0.
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G.2. Expanded MNIST, 20 Newsgroups, and CIFAR10 Experiment Set

Table 13 is an expanded version of Section 7.2’s Table 2. We provide these additional results to give the reader further
evidence of our methods’ superior performance.

In this section, each of the three datasets (i.e., MNIST, 20 Newsgroups, and CIFAR10) now has two positive-training (Ptrain)
class configurations that are partially disjoint from the positive-test (Ptest) class. For each such configuration, Table 13
contains three experiments (in order):

1. πtr < πte

2. πtr = πte

3. πtr > πte

It is easier to directly compare the effects of increasing/decreasing πtr when the magnitude of the training prior increase
and decrease are equivalent (e.g., for MNIST πte = 0.5 so we tested performance at πtr = πte ± 0.12 and πtr = πte ± 0.21
depending on the class partition). We maintained that rule of thumb when possible, but cases did arise where there were
insufficient positive example with the labels in Ptrain to support such a high positive prior. In those cases, we clamp that
Ptrain class definition’s maximum πtr.

The key takeaway from Table 13 is that across these additional, orthogonal definitions of Ptrain, our methods still outperform
PUc and nnPU* — usually by a wide margin (statistical significance according to 1% paired t-test).

In all experiments, our methods’ performance degraded as πtr increased since a larger prior makes it harder to identify the
negative examples in Xtr-u. To gain an intuition about why this is true, consider the extreme case where πtr = 1; learning
is impossible since the positive-train class-conditional distribution may be arbitrarily different, and there are no negative
samples that can be used to relate the two distributions. In contrast when πtr = 0, identifying the negative set is trivial
(i.e., all of Xtr-u is negative), and NU learning can be applied directly to learn g.

PUc performs best when πtr = πte. When πtr diverges from that middle point, PUc’s performance declines. To gain an
intuition why that is, consider density-ratio estimation in terms of the component class conditionals. When πtr = πte,
w(x) = 1 for all negative examples; from Table 13’s results, we know that PUc performs best when there is no bias,
i.e., Ptrain = Ptest. A static positive prior eliminates one possible source of bias making density-ratio estimation easier and
more accurate.
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Table 13. Full MNIST, 20 Newsgroups, and CIFAR10 experimental class partition results. Each result is the inductive misclassification
rate mean and standard deviation over 100 trials for MNIST, 20 Newsgroups, and CIFAR10 with different positive & negative class
definitions. For all experiments with positive bias (i.e., rows 2–8 for each dataset), all three of our methods had statistically significant
better performance than PUc and nnPU* according to a 1% paired t-test. Boldface indicates a shifted task’s best performing method.
Negative (N) & positive-test (Ptest) class definitions are identical for each dataset’s first three experiments. Positive train (Ptrain) specified
as Ptest denotes no bias. Our three methods – PURR, PU2aPNU, and PU2wUU – are denoted with †.

N Ptest Ptrain πtr πte
Two-Step (PU2) Baselines Ref.

PURR† aPNU† wUU† PUc nnPU* PNte

M
N

IS
T 0, 2, 4,

6, 8
1, 3, 5,
7, 9

Ptest 0.5 0.5 10.0 (1.3) 10.0 (1.2) 11.6 (1.6) 8.6 (0.8) 5.5 (0.5) x
7, 9

0.29 0.5 6.8 (0.8) 5.3 (0.6) 6.0 (0.7) 29.2 (2.1) 36.7 (2.7)
0.5 0.5 9.4 (1.5) 7.1 (0.9) 8.3 (1.5) 26.8 (2.4) 35.1 (2.5)
0.71 0.5 14.0 (3.0) 11.1 (1.4) 14.8 (3.1) 26.9 (3.0) 34.5 (2.9) 2.8 (0.2)

1, 3, 5
0.38 0.5 8.1 (1.0) 6.5 (0.8) 7.6 (0.9) 20.2 (2.5) 25.9 (1.1) y0.5 0.5 10.0 (1.6) 8.4 (1.1) 10.2 (1.4) 18.5 (2.9) 26.9 (1.2)
0.63 0.5 12.5 (2.3) 11.4 (1.3) 14.3 (2.3) 18.6 (3.3) 28.5 (1.2)

0, 2 5, 7 1, 3 0.5 0.5 4.0 (0.8) 3.6 (0.9) 3.1 (0.7) 17.1 (4.6) 30.9 (5.3) 1.1 (0.2)

20
N

ew
sg

ro
up

s

sci, soc,
talk

alt, comp,
misc, rec

Ptest 0.56 0.56 15.4 (1.3) 14.9 (1.0) 16.7 (2.3) 14.9 (1.0) 14.1 (0.8) x
misc, rec

0.37 0.56 13.9 (0.7) 12.8 (0.6) 14.3 (0.9) 28.9 (1.8) 28.8 (1.3)
0.56 0.56 17.5 (2.1) 13.5 (0.8) 15.1 (1.3) 23.9 (3.0) 28.8 (1.7)
0.65 0.56 20.2 (2.8) 14.0 (0.9) 15.9 (1.5) 21.8 (3.3) 29.0 (1.8) 10.5 (0.5)

comp
0.37 0.56 13.3 (0.6) 13.7 (0.6) 14.4 (0.7) 30.3 (2.0) 31.4 (0.7) y0.56 0.56 16.0 (1.5) 14.9 (0.7) 15.7 (0.9) 28.6 (2.6) 31.2 (0.8)
0.65 0.56 19.2 (2.4) 15.6 (0.9) 16.5 (1.2) 27.8 (2.7) 31.3 (0.7)

misc, rec soc, talk alt, comp 0.55 0.46 5.9 (1.0) 7.1 (1.1) 5.6 (1.7) 18.5 (4.3) 35.3 (5.2) 2.1 (0.3)

C
IF

A
R

10

Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Ptest 0.4 0.4 14.1 (0.8) 14.2 (1.3) 15.4 (1.7) 13.8 (0.7) 12.3 (0.6) x
Plane

0.14 0.4 12.1 (0.7) 11.9 (0.7) 12.4 (0.9) 26.7 (1.4) 26.7 (1.0)
0.4 0.4 13.8 (0.9) 14.5 (1.4) 15.1 (1.6) 20.6 (1.5) 27.4 (1.0)
0.6 0.4 16.1 (1.1) 16.7 (1.5) 20.0 (2.7) 21.5 (1.6) 28.4 (1.0) 9.7 (0.5)

Auto,
Truck

0.25 0.4 12.7 (0.7) 12.4 (0.7) 12.8 (0.8) 19.2 (1.1) 20.3 (0.8) y0.4 0.4 14.1 (0.9) 13.9 (1.1) 14.4 (1.2) 17.7 (1.0) 20.3 (0.8)
0.55 0.4 16.0 (1.1) 16.2 (1.6) 17.1 (2.2) 18.3 (1.1) 20.5 (0.9)

Deer, Horse Plane, Auto Cat, Dog 0.5 0.5 14.1 (0.9) 14.9 (1.5) 11.2 (0.8) 33.1 (2.7) 47.5 (2.0) 7.7 (0.4)
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G.3. Case Study: Arbitrary Adversarial Concept Drift

This section’s experiments model adversarial settings where the positive class-conditional distribution shifts significantly
faster than the negative class distribution. As explained in Section F.2.2, the training set was composed of spam and ham
emails from the TREC05 dataset; the test set was composed of spam and ham emails from the TREC07 dataset. The two
dataset’s ham emails are quite different – TREC05 relies heavily on Enron emails while TREC07 contains many emails
received on a university email server. We are therefore confident our fixed-negative-distribution assumption in Eq. (5) does
not hold.

As described in Section 5, the two-step methods’ first step transforms Xtr-u into a representative negative set via probabilistic
classifier σ̂. Our standard approach uses σ̂ to weight the samples. In this section’s experiment, we instead follow a top-k
approach. Recall that Xtr-u contains ntr-u examples. After training σ̂, the πtr · ntr-u examples in Xtr-u with the highest
predicted posteriors (according to σ̂) are marked as positive-valued which the remaining (1− πtr) · ntr-u examples are
treated as negative-valued. This top-k approach was needed due to the propensity of σ̂’s neural network to overfit the
rich, high-dimensional ELMo representations. The two-step learners’ second step (e.g., wUU and aPNU) was otherwise
unchanged.

Table 14 and Figure 4 compare our methods to PUc and nnPU across three different training priors (πtr). Under all
three experimental conditions, our three methods outperformed both PUc and nnPU* according to a 1% paired t-test.
PU2wUU was the top performer for all experiments. As evidenced by the PN misclassification rate, a highly accurate
classifier can be constructed for this dataset. Similarly, σ̂ accurately labels Xtr-u. The resulting surrogate negative set is more
useful than Xp to classify the spam emails from the test distribution. PU2aPNU performed slightly worse than PU2wUU
because the spam emails in Xp are of very limited value due to the significant adversarial concept drift.

Table 14. Inductive misclassification rate mean and standard deviation over 100 trials for arbitrary adversarial concept drift on the TREC
spam email datasets. In all experiments, our three methods – PURR, PU2aPNU, & PU2wUU – (which are denoted by †) statistically
outperformed PUc and nnPU* according to a paired t-test (p < 0.01) with PU2wUU the top performer across all training priors (πtr).

Train Test
πtr πte

Two-Step (PU2) Baselines Ref.

Pos. Neg. Pos. Neg. PURR† aPNU† wUU† PUc nnPU* PNte

2005
Spam

2005
Ham

2007
Spam

2007
Ham

0.4 0.5 26.5 (2.6) 26.9 (3.1) 25.1 (3.1) 35.2 (11.3) 40.9 (3.1) ↑
0.5 0.5 27.5 (3.4) 28.6 (4.5) 25.1 (3.3) 34.6 (10.2) 40.5 (2.7) 0.6 (0.3)
0.6 0.5 30.8 (4.2) 33.0 (5.7) 29.3 (6.5) 38.5 (10.8) 41.1 (2.9) ↓

πtr=0.4 πtr=0.5 πtr=0.6
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Figure 4. Mean inductive misclassification rate over 100 trials for the TREC spam datasets across three training priors (πtr). Our
PU2wUU method was the top performer across all experiments.

G.4. Identical Positive Supports with Bias

The positive bias applied in this section’s experiments is totally different from that in Sections 7.2 and 7.3. Here we mimic
situations where the labeled data are complete but non-representative resulting in identical marginal distribution supports but
shifts in the marginal distribution’s magnitude. We follow the experimental setup described in Sakai & Shimizu (2019)’s
PUc paper. LIBSVM (Chang & Lin, 2011) benchmarks are used exclusively to ensure suitability with the SVM-like PUc;
benchmarks “banana,” “susy,” “ijcnn1,” and “a9a” appear in Sakai & Shimizu (2019)’s PUc paper.
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Table 15. Inductive misclassification rate mean & standard deviation over 100 trials with Sakai & Shimizu (2019)’s median feature
vector-based bias for 10 LIBSVM datasets. Underlining denotes a statistically significant performance improvement versus PUc and
nnPU* according to a 1% paired t-test. Boldface indicates each dataset’s best performing method. np = 300 and ntr-u = nte-u = 700.
Datasets are ordered by increasing dimension. Our three methods – PURR, PU2aPNU, and PU2wUU – are denoted with †.

Dataset d
Two-Step (PU2) Baselines Ref.

PURR† aPNU† wUU† PUc nnPU* PNte

banana 2 12.9 (2.1) 11.8 (1.6) 13.3 (2.3) 17.4 (3.4) 28.8 (3.8) 8.6 (0.6)
cod-rna 8 14.7 (2.6) 15.1 (3.2) 15.5 (2.9) 25.2 (5.0) 24.9 (2.3) 6.5 (0.9)
susy 18 24.2 (2.1) 25.6 (2.2) 25.8 (2.2) 27.3 (4.3) 45.9 (3.9) 20.5 (1.3)
ijcnn1 22 22.7 (2.8) 17.7 (2.8) 24.6 (3.1) 23.9 (3.6) 34.7 (3.6) 6.8 (0.8)
covtype.b 54 29.5 (2.9) 32.5 (3.2) 29.9 (2.4) 39.4 (4.2) 55.5 (2.8) 22.3 (1.4)
phishing 68 11.3 (1.4) 9.6 (1.0) 11.1 (1.8) 13.8 (4.1) 22.5 (4.1) 6.2 (0.6)
a9a 123 27.1 (2.1) 26.6 (1.8) 27.1 (2.1) 32.8 (2.6) 32.5 (2.3) 20.6 (1.0)
connect4 126 34.9 (3.1) 32.9 (2.7) 35.0 (2.9) 37.0 (2.8) 45.1 (2.6) 21.6 (1.3)
w8a 300 17.2 (2.6) 21.0 (2.9) 16.8 (2.9) 29.3 (6.2) 41.1 (4.3) 6.6 (0.7)
epsilon 2,000 33.5 (4.8) 36.5 (5.0) 31.5 (1.7) 62.8 (6.7) 64.6 (1.5) 23.7 (1.1)

Sakai & Shimizu’s bias operation is based on the median feature vector. Formally, given dataset X ⊂ Rd, define cmed as the
median of set {‖x− x̄‖2 : x ∈ X} where ‖·‖2 is the L2 (Euclidean) norm and x̄ is X ’s mean vector, i.e.,

x̄ =
1

|X |
∑
x∈X

x.

Partition X into subsets Xlo := {x ∈ X : ‖x− x̄‖2 < cmed} and Xhi := X \ Xlo. Examples in Xp and Xtr-u are selected
from Xlo with probability p = 0.9 and from Xhi with probability 1− p. p = 0.1 is used when constructing Xte-u and the test
set. This bias operation simplifies density-ratio estimation since ∀x∈X w(x) ∈ { 19 , 9}. Their setting πtr = πte = 0.5 also
simplifies density estimation as detailed in Section G.2.

We modified Sakai & Shimizu’s setup such that X was exclusively the original dataset’s positive-valued examples. Negative
examples were sampled uniformly at random.

Analysis Table 15’s experiments used the bias procedure described above. According to a 1% paired t-test, PURR and
PU2aPNU outperformed PUc and nnPU* on all ten benchmarks; PU2wUU outperformed PUc and nnPU* on nine of ten
benchmarks.

PURR was the top performer on three benchmarks; PU2aPNU was the top performer on five benchmarks while PU2wUU
was the top performer on two benchmarks. Each estimator is best suited to a different feature dimension range. PURR
performed best when the dataset had fewer features (e.g., <50) while PU2aPNU performed well when the dimension was
moderate. PU2wUU was the top performer when the dimension was large (e.g., ≥300).

Accurate risk estimation is more challenging when the training sets are comparatively small but the feature count is high.
We expect that is causing PURR to struggle to reconcile/relate the different labeled losses (e.g., positive-labeled, unlabeled
train, unlabeled test) in these higher dimension datasets.
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Figure 5. Mean inductive misclassification rate over 100 trials with Sakai & Shimizu (2019)’s median feature vector-based bias for the
10 LIBSVM datasets in Section G.4.
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G.5. Empirical Comparison of Absolute-Value and Non-Negativity Corrections

Section 3 describes our streamlined absolute-value correction to address PU learning overfitting. This section compares our
simpler absolute-value correction to Kiryo et al. (2017)’s non-negativity correction using max and “defitting.”

G.5.1. ORDINARY POSITIVE-UNLABELED LEARNING PERFORMANCE WITHOUT DISTRIBUTIONAL SHIFT

We first consider a direct comparison of nnPU and abs-PU on unshifted data. Xp and Xu are constructed identically to the
procedure used to construct the positive-labeled and unlabeled-train datasets in our aPU learning experiments. Unlike before,
the inductive test set is now drawn from the training distribution. We then trained classifiers using nnPU and abs-PU with
the sigmoid loss. In all experiments, the classifiers had identical initial weights and were trained on identical dataset splits.

Hyperparameters (including γ) were tuned using nnPU; these identical hyperparameters were then used for abs-PU (i.e., not
in any way tuned for absolute-value correction). Therefore, the results represent the performance floor when transitioning
from nnPU to abs-PU. This was done due to time constraints.

Table 16 compares abs-PU and nnPU for the datasets in Sections 7.29, 7.3, and G.4. We also report the difference between
abs-PU and nnPU with a positive number indicating that abs-PU performed better that nnPU.

abs-PU was the top performer on eight of fourteen benchmarks and tied with nnPU on two others; the results are generally
too close to be statistically significant. Both methods had comparable variances. In summary, abs-PU is both simpler and
saw similar or slightly better performance than nnPU on unbiased data, even under conditions (i.e., hyperparameters) that
favor nnPU.

Table 16. Comparison of inductive misclassification rate mean and standard deviation over 100 trials for abs-PU and nnPU on unshifted
data. Boldface denotes the best performing algorithm according to mean misclassification rate. For the difference (Diff.) column, a
positive value denotes that abs-PU outperformed nnPU.

Dataset abs-PU nnPU nnPU – abs-PU
(Diff.)

MNIST 6.6 (0.7) 6.5 (0.7) –0.1 ( 0 )
20 Newsgroups 13.3 (1.3) 13.5 (1.2) 0.2 (–0.1)
CIFAR10 12.4 (0.7) 12.4 (0.7) 0 ( 0 )
TREC Spam 2.0 (1.0) 2.1 (0.9) 0.1 (–0.1)
banana 10.5 (1.0) 10.5 (1.1) 0 ( 0.1)
cod-rna 10.3 (1.8) 10.4 (2.0) 0.1 ( 0.2)
susy 28.8 (1.7) 28.7 (1.8) –0.1 ( 0.1)
ijcnn1 10.1 (1.4) 10.2 (1.5) 0.1 ( 0.1)
covtype.b 32.8 (2.2) 33.3 (2.1) 0.5 (–0.1)
phishing 8.6 (1.3) 8.5 (1.2) –0.1 (–0.1)
a9a 15.9 (1.1) 16.0 (1.2) 0.1 ( 0.1)
connect4 24.6 (2.2) 24.4 (2.0) –0.2 (–0.2)
w8a 17.8 (1.6) 17.9 (1.6) 0.1 ( 0 )
epsilon 31.1 (1.4) 31.2 (1.7) 0.1 ( 0.3)

G.5.2. ORDINARY POSITIVE-UNLABELED LEARNING PERFORMANCE UNDER DISTRIBUTION SHIFT

The previous section compared the performance of nnPU and abs-PU under ideal conditions, i.e., no positive shift. This
section compares nnPU and abs-PU with positive shift, specifically under the aPU learning conditions we use in our
experimental evaluation.

Like in the previous section, all classifiers in each experimental trial had identical initial weights and saw identical dataset
splits. Hyperparameters (including γ) were tuned using nnPU; these identical hyperparameters were then used for abs-PU
(i.e., not in any way tuned for absolute-value correction). Therefore, the results again represent the performance floor if
transitioning from nnPU to abs-PU. This choice was made due to limited time.

Recall from Section 7 that evaluation baseline nnPU* considers two nnPU-based classifiers – one trained with unlabeled
9The test conditions for MNIST, 20 Newsgroups, and CIFAR10 correspond to the unbiased test conditions (i.e., row 1 for each dataset

where Ptrain= Ptest) in Table 2/Table 13.
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set Xte-u and the other trained with unlabeled set Xtr-u ∪ Xte-u (using the true composite prior), and we report whichever of
those two classifiers performed best on average. In this section, we introduce abs-PU*, which like nnPU*, considers two
classifiers separately trained with the different unlabeled set configurations: Xte-u and Xtr-u ∪ Xte-u. The only difference is
that abs-PU*, as its name would suggest, uses our abs-PU risk estimator. We specifically separated this section to delineate
the baseline performance of our contribution (abs-PU) versus existing methods (nnPU).

Table 17 compares abs-PU* and nnPU* for the extended set of experiments in Table 13 (see Section G.2). Recall that those
experiments tested cases where some positive subclasses exist only in the test distribution. Similar to Table 16, a positive
value in the column labeled “Diff.” denotes that abs-PU* performed better than nnPU*.

For multiple positive-train (Ptrain) class configurations (e.g., MNIST Ptrain= {1, 3, 5}), abs-PU* and nnPU* exhibited similar
performance. When there was a large difference between the two methods (e.g., 20 Newsgroups Ptrain= {misc, rec}), abs-PU*
had significantly better mean accuracy – reducing the misclassification rate by multiple percentage points. The difference
between the methods was most pronounced when Ptrain and Ptest are disjoint.

These results indicate that in some cases, abs-PU* is learning decision boundaries that better generalize to unseen types of
data. To be clear, this does not apply to all datasets (CIFAR10 exhibited little difference between the methods except when
the positive supports were disjoint) nor even to all class partitions within a dataset (see MNIST positive-train classes {7, 9}
versus {1, 3, 5}). It should also be noted that missing positive subclasses is a more extreme form of positive shift. The next
set of results considers the more mild case of marginal-distribution magnitude shifts.

Table 18 compares abs-PU* and nnPU* for the 10 LIBSVM datasets in Table 15 (see Section G.4). Recall that in these
experiments, the positive-train and positive-test class-conditionals have identical supports. For seven of ten benchmarks,
abs-PU* had better mean performance than nnPU* and had equivalent performance on one other benchmark. abs-PU* did
have generally higher result variance. For some benchmarks (e.g., ijcnn1, covtype.b, epsilon, etc.), the change in
variance was more than offset by the improvement in mean accuracy. Had the abs-PU* learning rates been tuned directly
instead of using nnPU*’s hyperparameter settings, we expect this variance difference would have been mitigated. Again
however, limited time prevented that experiment.

In summary, abs-PU*’s performance is comparable or slightly/significantly better than that of nnPU* under aPU learning
conditions that are deleterious to ordinary PU risk estimators but that may be more realistic to real-world data.
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Table 17. Comparison of inductive misclassification rate mean and standard deviation over 100 trials for abs-PU* and nnPU* for
the experimental shift tasks (eight per dataset) in Table 13 with partially/fully disjoint positive class supports. Boldface denotes
the best performing task according to mean misclassification rate. For the difference column, a positive value indicates abs-PU*
outperformed nnPU*.

N Ptest Ptrain πtr πte abs-PU* nnPU* Diff.

M
N

IS
T 0, 2, 4,

6, 8
1, 3, 5,
7, 9

7, 9
0.29 0.5 34.4 (2.6) 36.7 (2.7) 2.3 ( 0.1)
0.5 0.5 33.1 (2.3) 35.1 (2.5) 2.0 ( 0.2)
0.71 0.5 32.7 (2.2) 34.5 (2.9) 1.8 ( 0.7)

1, 3, 5
0.38 0.5 25.9 (1.2) 25.9 (1.1) 0 (–0.1)
0.5 0.5 27.1 (1.3) 26.9 (1.2) –0.2 (–0.1)
0.63 0.5 28.7 (1.1) 28.5 (1.2) –0.2 ( 0.1)

0, 2 5, 7 1, 3 0.5 0.5 25.7 (6.9) 30.9 (5.3) 5.2 (–1.6)

20
N

ew
sg

ro
up

s

sci, soc,
talk

alt, comp,
misc, rec

misc, rec
0.37 0.56 27.0 (1.9) 28.8 (1.3) 1.8 (–0.6)
0.56 0.56 26.0 (1.7) 28.8 (1.7) 2.8 ( 0 )
0.65 0.56 25.9 (1.7) 29.0 (1.8) 3.1 ( 0.1)

comp
0.37 0.56 31.2 (0.7) 31.4 (0.7) 0.2 ( 0 )
0.56 0.56 31.0 (0.9) 31.2 (0.8) 0.2 (–0.1)
0.65 0.56 31.0 (0.8) 31.3 (0.7) 0.3 (–0.1)

misc, rec soc, talk alt, comp 0.55 0.46 34.6 (5.0) 35.3 (5.2) 0.7 ( 0.2)

C
IF

A
R

10

Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Plane
0.14 0.4 26.5 (1.0) 26.7 (1.0) 0.2 ( 0 )
0.4 0.4 27.4 (1.0) 27.4 (1.0) 0 ( 0 )
0.6 0.4 28.3 (1.1) 28.4 (1.0) 0.1 (–0.1)

Auto,
Truck

0.25 0.4 20.3 (0.8) 20.3 (0.8) 0 ( 0 )
0.4 0.4 20.4 (0.9) 20.3 (0.8) –0.1 (–0.1)
0.55 0.4 20.9 (0.9) 20.5 (0.9) –0.4 ( 0 )

Deer, Horse Plane, Auto Cat, Dog 0.5 0.5 44.6 (1.8) 47.5 (2.0) 2.9 ( 0.2)

Table 18. Comparison of inductive misclassification rate mean and standard deviation over 100 trials for abs-PU* and nnPU* for the
10 LIBSVM datasets in Table 15 under Sakai & Shimizu (2019)’s mean feature vector bias. Boldface denotes the best performing task
according to mean misclassification rate. For the difference column, a positive value indicates abs-PU* outperformed nnPU*.

Dataset d abs-PU* nnPU* Diff.

banana 2 28.5 (4.1) 28.8 (3.8) 0.3 (–0.3)
cod-rna 8 25.1 (2.5) 24.9 (2.3) –0.2 (–0.2)
susy 18 45.9 (3.9) 45.9 (3.9) 0 ( 0 )
ijcnn1 22 33.3 (3.9) 34.7 (3.6) 1.4 (–0.3)
covtype.b 54 54.6 (3.1) 55.5 (2.8) 0.9 (–0.3)
phishing 68 22.9 (4.2) 22.5 (4.1) –0.4 (–0.1)
a9a 123 32.0 (2.5) 32.5 (2.3) 0.5 (–0.2)
connect4 126 44.9 (3.1) 45.1 (2.6) 0.2 (–0.5)
w8a 300 40.0 (4.0) 41.1 (4.3) 1.1 ( 0.3)
epsilon 2,000 64.1 (1.4) 64.6 (1.5) 0.5 ( 0.1)
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G.5.3. EFFECT OF ABSOLUTE-VALUE CORRECTION ON OUR APU LEARNING METHODS

This section examines the effect of using absolute-value correction over non-negativity correction for our three aPU learning
methods – PURR, PU2aPNU, and PU2wUU. Recall that non-negativity correction requires custom ERM algorithms to
support “defitting.” Section E describes our methods’ custom ERM frameworks when using non-negativity.

Due to time constraints, hyperparameter tuning was performed using non-negativity correction with the same hyperparame-
ters used for the absolute-value based methods. Therefore, these results maximally favor the baseline of non-negativity
correction.

Table 19’s experiments are identical to Table 13 in Section G.2. “abs” denotes our standard aPU learning methods
(see Sections 5 and 6) while “nn” denotes our methods modified to use Kiryo et al. (2017)’s non-negativity correction.
For MNIST, neither absolute-value correction nor non-negativity clearly outperformed the other. For the more challenging
20 Newsgroups and CIFAR10 datasets, absolute-value correction had consistently better performance than non-negativity.
The only exception were the disjoint support experiments and one experimental setup for PU2wUU on 20 Newsgroups.
Although not shown in Table 13 due to limited space, both correction strategies had comparable variance.

Table 19. Comparison of mean inductive misclassification rate over 100 trials for the non-overlapping support experiments in Table 13
when using absolute-value (abs) and non-negativity (nn) corrections for our aPU learning methods. The best performing method (according
to mean misclassification rate) is shown in bold. A positive difference (Diff.) denotes that our absolute-value correction had better
performance. Result standard deviations are comparable for both correction methods but are not shown here to improve table clarity.

Ptest Ptrain πtr πte
PURR PU2aPNU PU2wUU

abs nn Diff. abs nn Diff. abs nn Diff.

M
N

IS
T 1, 3, 5,

7, 9

Ptest 0.5 0.5 10.0 10.2 0.2 10.0 9.8 –0.2 11.6 11.7 0.1

7, 9
0.29 0.5 6.8 6.6 –0.2 5.3 5.3 0 6.0 6.0 0
0.5 0.5 9.4 9.4 0 7.1 7.1 0 8.3 8.3 0
0.71 0.5 14.0 14.6 0.6 11.1 11.3 0.2 14.8 15.2 0.4

1, 3, 5
0.38 0.5 8.1 8.0 –0.1 6.5 6.5 0 7.6 7.7 0.1
0.5 0.5 10.0 9.9 –0.1 8.4 8.4 0 10.2 10.2 0
0.63 0.5 12.5 12.9 0.4 11.4 11.4 0 14.3 14.5 0.2

5, 7 1, 3 0.5 0.5 4.0 3.9 –0.1 3.6 3.6 0 3.1 3.2 0.1

20
N

ew
s. alt, comp,

misc, rec

Ptest 0.56 0.56 15.4 15.5 0.1 14.9 15.0 0.1 16.7 16.7 0

misc,
rec

0.37 0.56 13.9 13.9 0 12.8 12.8 0 14.3 14.3 0
0.56 0.56 17.5 17.7 0.2 13.5 13.5 0 15.1 15.1 0
0.65 0.56 20.2 20.8 0.6 14.0 14.0 0 15.9 15.9 0

comp
0.37 0.56 13.3 13.3 0 13.7 13.7 0 14.5 14.4 –0.1
0.56 0.56 16.0 16.5 0.5 14.9 14.9 0 15.7 15.7 0
0.65 0.56 19.2 19.6 0.4 15.6 15.6 0 16.5 16.5 0

soc, talk alt, comp 0.55 0.46 5.9 5.8 –0.1 7.1 7.1 0 5.6 5.7 0.1

C
IF

A
R

10

Plane,
Auto, Ship,
Truck

Ptest 0.4 0.4 14.1 14.3 0.2 14.2 14.4 0.2 15.4 15.8 0.4

Plane
0.14 0.4 11.9 12.0 0.1 11.9 12.0 0.1 12.4 12.4 0
0.4 0.4 13.8 14.0 0.2 14.5 14.6 0.1 15.1 15.5 0.4
0.6 0.4 16.1 16.6 0.5 16.7 17.1 0.4 20.0 20.2 0.2

Auto,
Truck

0.25 0.4 12.7 12.8 0.1 12.4 12.5 0.1 12.8 13.0 0.2
0.4 0.4 14.1 14.3 0.2 13.9 14.0 0.1 14.4 14.6 0.2
0.55 0.4 16.0 16.4 0.4 16.2 16.3 0.1 17.1 17.4 0.3

Plane, Auto Cat, Dog 0.5 0.5 14.1 14.0 –0.1 14.9 14.8 –0.1 11.2 11.3 0.1

Table 20’s experiments match the experimental conditions for the 10 LIBSVM datasets in Table 15 from Section G.4.
Biasing follows Sakai & Shimizu (2019)’s median feature vector-based approach. Neither absolute-value nor non-negativity
correction consistently outperformed the other in these LIBSVM experiments. Note though that since absolute-value
correction is a simpler method with one less hyperparameter, γ, to tune, comparable performance implicitly favors
absolute-value correction over non-negativity.
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Table 20. Comparison of inductive misclassification rate mean and standard deviation over 100 trials for Table 15’s LIBSVM dataset
experiments using Sakai & Shimizu’s mean feature vector biasing with absolute-value (abs) and non-negativity (nn) corrections for
our aPU learning methods. The best performing method (according to mean misclassification rate) is shown in bold. A positive
difference (Diff.) denotes that our absolute-value correction had better performance than non-negativity correction.

Dataset
PURR PU2aPNU PU2wUU

abs nn Diff. abs nn Diff. abs nn Diff.

banana 12.9 (2.1) 12.9 (2.2) 0 ( 0.1) 11.8 (1.6) 11.7 (1.6) –0.1 ( 0 ) 13.3 (2.3) 14.0 (2.3) 0.7 ( 0 )
cod-rna 14.7 (2.6) 14.6 (2.9) –0.1 ( 0.3) 15.1 (3.2) 15.1 (3.2) 0 ( 0 ) 15.5 (2.9) 15.5 (3.3) 0 ( 0.4)
susy 24.2 (2.1) 24.6 (2.1) 0.4 ( 0 ) 25.6 (2.2) 25.6 (2.2) 0 ( 0 ) 25.8 (2.2) 26.0 (2.1) 0.2 (–0.1)
ijcnn1 22.7 (2.8) 23.0 (2.8) 0.3 ( 0 ) 17.7 (2.8) 19.0 (2.9) 1.3 ( 0.1) 24.6 (3.1) 24.9 (2.9) 0.3 (–0.2)
covtype.b 29.5 (2.9) 29.6 (2.9) 0.1 ( 0 ) 32.5 (3.2) 32.6 (3.1) 0.1 (–0.1) 29.9 (2.4) 30.1 (2.7) 0.2 ( 0.3)
phishing 11.3 (1.4) 11.9 (1.4) 0.6 ( 0 ) 9.6 (1.0) 9.6 (1.0) 0 ( 0 ) 11.1 (1.8) 11.7 (1.9) 0.6 ( 0.1)
a9a 27.1 (2.1) 27.0 (2.1) –0.1 ( 0 ) 26.6 (1.8) 26.5 (1.8) –0.1 ( 0 ) 27.1 (2.1) 27.0 (2.0) –0.1 (–0.1)
connect4 34.9 (3.1) 34.2 (2.6) –0.7 (–0.5) 32.9 (2.7) 33.0 (2.7) 0.1 ( 0 ) 35.0 (2.9) 34.9 (2.6) –0.1 (–0.3)
w8a 17.2 (2.6) 17.1 (2.4) –0.1 (–0.2) 21.0 (2.9) 20.3 (2.9) –0.7 ( 0 ) 16.8 (2.9) 18.4 (2.7) 1.6 (–0.2)
epsilon 33.5 (4.8) 32.7 (3.1) –0.8 (–1.7) 36.5 (5.0) 37.8 (6.9) 1.3 ( 1.9) 31.5 (1.7) 31.3 (1.7) –0.2 ( 0 )
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G.6. Analyzing the Effect of Positive and Negative Class-Conditional Distribution Shift

The goal of these experiments is to:

1. Demonstrate the effectiveness of our approaches across the entire spectrum of positive-train class-conditional distribu-
tion shift.

2. Study how our methods perform when the assumption of a fixed negative class-conditional distribution is violated.

We look at these trends across three datasets (as in Section 7.2): MNIST, 20 Newsgroups, and CIFAR10. The positive and
negatives classes are formed by combining two labels from the original dataset (the use of two labels per class is necessary
for this experimental setup). Table 21 enumerates each dataset’s positive and negative class definitions; these definitions
apply for both train and test. The dataset sizes are listed in Table 22; note that nTest is the size of the inductive test set
used to measure performance. The validation set was one-fifth the training set size. The priors were also fixed such that
πtr = πte = 0.5.

Table 21. Positive and negative class definitions for the class-conditional bias experiments

Dataset Positive Negative

C1 C2 C1 C2

MNIST 8 9 3 4
20 Newsgroups sci rec comp talk
CIFAR10 Auto Plane Ship Truck

Table 22. Dataset sizes for the class-conditional bias experiments

Dataset np ntr-u nte-u nTest

MNIST 250 5,000 5,000 1,500
20 Newsgroups 500 2,000 2,000 1,000
CIFAR10 500 5,000 5,000 1,500

The default rule in this section is that the positive/negative train/test classes are selected uniformly at random without
replacement from their respective subclasses. In each experiment, either the positive-train or negative-train class-conditional
distribution is shifted (never both). The test distribution is never biased and is identical for all experiments.

Positive-Train Shift In these experiments, the positive-train class-conditional distribution (i.e., ptr-p(x)) is shifted. Recall
that each positive class is composed of two labels; denote them C1 and C2 (e.g., C1 = Auto and C2 = Plane for CIFAR10).
Pr[Labeltr=C1|Y = +1] is the probability that any positive-valued training example has original label C1. Since there are
two labels per class,

Pr[Labeltr=C2|Y = +1] = 1− Pr[Labeltr=C1|Y = +1]. (26)

The positive-train class-conditional distribution shift entails sweeping Pr[Labeltr=C1|Y = +1] from 0.5 to 1 (i.e., from
unbiased on the left to maximally biased on the right). This setup is more challenging than shifting the positive-test
distribution since it entails the learner seeing fewer labeled examples from positive subclass C2.

Figures 6a, 6c, and 6e show the positive-train shift’s effect on the MNIST, 20 Newsgroups, and CIFAR10 misclassification
rate respectively (where C1 corresponds to digit 8, document category “rec”, and image type “automobile”). PURR’s
performance was consistent across the entire bias range while the two step methods’ (PU2wUU and PU2aPNU) performance
improved as bias increased (due to easier identification of negative examples as explained in Section 7.2). In contrast, PUc’s
performance degrades as bias increases; this degradation is largely due to poor density estimation and demonstrates why
covariate shift methods can be non-ideal.

PNtr and PNte are trained using (labeled) Xtr-u and Xte-u. Since the test distributions are never biased, PNte is unaffected
by shift. In contrast, as Pr[Labeltr=C1|Y = +1] increases, there are fewer examples in Xtr-u with label C2 causing a
degradation in PNtr’s performance.
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PUc’s and nnPU*’s performance begins to degrade at the same point where PNtr’s and PNte’s performance begins to diverge.
For nnPU* in particular, this degradation is primarily attributable to fewer examples labeled C2 in Xp. PUc is more robust to
bias than nnPU* (as shown by the slower rate of degradation) since it considers distributional shifts.

Negative-Train Shift These experiments follow the same basic concept as the positive-train class-conditional distribution
shift described above except that the bias is instead applied to the negative-train class-conditional distribution, i.e., ptr-n(x).
This bias means that ptr-n(x) 6= pte-n(x). To reiterate, these experiments deliberately violate Eq. (5)’s assumption upon
which our methods are predicated. The goal here is to understand our methods’ robustness under intentionally deleterious
conditions. It is more deleterious to bias the negative class inXtr-u since both two-step methods and PURR useXtr-u’s negative
risk in dependent calculations; any error propagates and compounds in these subsequent operations.

Let C1 and C2 now be the two labels that make up the negative class (e.g., C1 = Ship and C2 = Truck for CIFAR10). Now,
Pr[Labeltr = C1|Y = −1] is swept along the x-axis from 0.5 to 1 (unbiased to maximally biased). The results for MNIST,
20 Newsgroups, and CIFAR10 are in Figures 6b, 6d, and 6f respectively.

With the exception of PU2wUU on MNIST, all of our methods showed moderate robustness to some negative class-condi-
tional distribution bias. In particular, PU2aPNU was almost as robust as PUc in some cases. nnPU*’s robustness here is
expected since anything not in Xp is assumed negative; even under bias, sufficient negative examples exist for each label
in Xte-u to allow nnPU* to learn how to classify those examples.
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(c) 20 Newsgroups positive train bias
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(d) 20 Newsgroups negative train bias
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(e) CIFAR10 positive train bias
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(f) CIFAR10 negative train bias

Figure 6. Effect of positive (ptr-p(x)) or negative (ptr-n(x)) training class-conditional distribution shift on inductive misclassification rate
for the MNIST, 20 Newsgroups, and CIFAR10 datasets. The x-axis corresponds to Pr[Labeltr = C1|y = ŷ] where ŷ ∈ {±1}. Each data
point is the average of 100 trials.



Positive-Unlabeled Learning with Arbitrarily Non-Representative Labeled Data

G.7. Effect of Prior Probability Estimation Error

As explained in Section 4, this work assumes that positive-class priors, πtr and πte, are known. The goal of these experiments
is to study our methods’ performance when the priors are misspecified.

Experimental Setup These experiments reuse the partially disjoint positive-support experiment setups from Section 7.2’s
Table 2. Therefore, we are specifically considering the MNIST, 20 Newsgroups, and CIFAR10 datasets with Table 23
summarizing all setups.

πtr and πte in Table 23 are the actual prior probabilities used to construct each training and test data set. We tested our
methods’ performance when each prior was specified correctly and when each prior was misspecified by ±20% for a total
of 9 = 3× 3 conditions per learner. πtr was only misspecified when training g. σ̂ was always provided the correct prior; this
decision was made due to constraints in the implementation of our code. It is not an algorithmic limitation. Like all previous
experiments, performance was evaluated using the inductive misclassification rate.

PUc estimates πte as part of its density-ratio estimation. As such, we only report three bias conditions for PUc, all over
training prior πtr.

Tables 24, 25, and 26 contain the results for MNIST, 20 Newsgroups, and CIFAR10 respectively. Each learner’s results are
presented in a 3× 3 grid with πtr changing row to row while πte changes column to column. Each cell is shaded red, with a
darker background denoting worse performance (i.e., a greater misclassification rate). Even under the worst-case bias where
both πtr and πte were shifted, all of our methods outperformed PUc.

Similar to Section G.6’s experiments, the MNIST results were most affected by bias. The 20 Newsgroups and CIFAR10
results were more immune due to the richer feature representations generated through transfer learning. In most cases, the
worst performance was observed when πtr and πte saw opposite bias, e.g., πtr was overestimated while πte was underestimated
or vice versa; these values appear in the upper-right or lower-left corners of each learner’s 3× 3 grid.

aPNU was least affected by misspecified priors. While this is partially due to σ̂ not observing the misspecified prior, it is not
entirely due to that since aPNU generally shifted less than wUU.

Table 23. Positive train (Ptrain), positive test (Ptest), and negative (N) class definitions and actual prior probabilities for the experiments
examining the effect of misspecified prior(s) on our algorithms’ performance.

N Ptrain Ptest πtr πte

MNIST 0, 2, 4,
6, 8

1, 3, 5,
7, 9 7, 9 0.5 0.5

20 News. sci, soc,
talk

alt, comp,
misc, rec

misc,
rec 0.37 0.56

CIFAR10
Bird, Cat,
Deer, Dog,
Frog, Horse

Plane,
Auto, Ship,
Truck

Plane 0.4 0.4
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Table 24. Combined heat map and table showing the effect of incorrectly specified priors πtr and πte on MNIST’s inductive misclassification
rate. Each result is the average of 100 trials.

PURR aPNU wUU PUc
0.8πte πte 1.2πte 0.8πte πte 1.2πte 0.8πte πte 1.2πte

0.8πtr 17.4 16.6 19.8 7.4 9.5 12.2 10.3 13.2 18.7 29.6
πtr 12.9 9.2 13.6 6.6 7.4 10.1 8.5 10.3 13.9 26.7

1.2πtr 25.3 15.8 12.7 18.0 7.7 7.5 16.9 8.9 10.3 26.3

Table 25. Combined heat map and table showing the effect of incorrectly specified priors πtr and πte on 20 Newsgroups’s inductive
misclassification rate. Each result is the average of 100 trials.

PURR aPNU wUU PUc
0.8πte πte 1.2πte 0.8πte πte 1.2πte 0.8πte πte 1.2πte

0.8πtr 19.9 18.8 18.3 12.5 12.5 13.2 13.9 14.6 16.6 34.2
πtr 16.8 15.3 17.7 12.7 12.3 12.8 14.0 14.2 15.7 28.8

1.2πtr 16.4 13.8 16.7 14.8 12.4 12.5 16.4 13.9 15.0 25.3

Table 26. Combined heat map and table showing the effect of incorrectly specified priors πtr and πte on CIFAR10’s inductive misclassifi-
cation rate. Each result is the average of 100 trials.

PURR aPNU wUU PUc
0.8πte πte 1.2πte 0.8πte πte 1.2πte 0.8πte πte 1.2πte

0.8πtr 16.5 16.5 18.9 14.0 15.4 16.9 15.5 17.5 20.6 23.9
πtr 15.0 13.7 15.9 13.3 14.1 15.7 14.1 15.5 17.8 20.6

1.2πtr 18.1 14.8 14.8 15.7 13.5 14.3 15.7 13.9 15.5 20.0


