
Baselines: Influence estimation methods & Deep KNN [4] poison defense 

 

Attack #1: Convex polytope data poisoning [5] on CIFAR10

 
Attack #2: Speech recognition backdoor dataset [6]
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What is a Training Set Attack?

github.com/ZaydH/cosin
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Key Insight:         ’s CosIn influence distribution should have an exceptionally 

heavy upper-tail due to the exceptionally influential

                 Adversarial training example                                       Clean training example

CIFAR10 Data Poisoning Speech Recognition Backdoor
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Non-Targets

Influence: Quantifies how much each training example 
contributes to a test instance’s classification loss
 

Existing Influence Estimation Methods:
• Influence functions [1]
•Representer points [2]
•Training gradient aggregation methods, e.g., TracIn [3]

TracIn Checkpoint Influence Estimator [3]

General-Purpose Influence Estimation 
CosIn ✓0 Only (ours) CosIn (ours) TracIn

Influence Functions Representer Pt. Deep k-NN
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TracInCP(z, zte) :=
T

∑
t=1

ηt ∇θℓ(z; θt) ⋅ ∇θℓ(zte; θt)

Training Ex. Test Ex. Training/Test Gradient Dot 
Product Over Each Epoch

Takeaway: Influence estimation simplifies to sums of dot 
products over the training set & a test (target) example

Our Goals

       Identification: Separate the clean & adversarial datasets
 

Target Detection: Determine if a test example is targeted zte
?=

CosIn — Our Method

Insight:        must be highly influential to change         ’s prediction

Observation: Existing influential estimation methods identify poison very poorly

Our Method: Cosine Similarity Influence Estimator — CosIn — adapts TracIn  
to better identify highly influential examples that are likely to be attacks by:

1. Normalize TracInCP dot products by gradient norms

2. Consider all examples at any checkpoint — not just those in the minibatches

Why Normalize the Dot Products?

CIFAR10 Data Poisoning Speech Recognition Backdoor

-2 0 2 4 6
-4
-2
0
2
4
6

Theoretical Quantile

Sa
m

pl
e

Q
ua

nt
ile

-2 0 2 4 6
-4
-2
0
2
4
6

Theoretical Quantile

Sa
m

pl
e

Q
ua

nt
ile

Observation:         ’s gradient magnitudes are not well 
correlated with whether the training instance is adversarial

Targets

And a lot more! Text and target detection experiments are in the paper…
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https://github.com/ZaydH/cosin

