
Baselines: Influence estimation methods & Deep KNN [4] poison defense

Attack #1: Convex polytope data poisoning [5] on CIFAR10

Attack #2: Speech recognition backdoor dataset [6]

References

Experimental Results

Using CosIn to Detect a Target

[1] Koh et al., “Understanding black-box predictions via influence functions” ICML, 2017.

[2] Yeh et al. “Representer point selection for explaining deep neural networks”, NeurIPS, 2018.

[3] Pruthi et al. “Estimating training data influence by tracing gradient descent” NeurIPS, 2020.

[4] Peri et. al. “Deep k-NN defense against clean-label data poisoning attacks.” AROW, 2020.

[5] Zhu et al. “Transferable clean-label poisoning attacks on deep neural nets.” ICML, 2019.

[6] Liu et al. “Trojaning attack on neural networks.” NDSS, 2018.

What is a Training Set Attack?

github.com/ZaydH/cosin

Simple, Attack-Agnostic Defense Against Targeted
Training Set Attacks Using Cosine Similarity

Zayd Hammoudeh, Daniel Lowd
{zayd, lowd}@cs.uoregon.edu

2021 Workshop on
Uncertainty in Deep Learning

Key Insight: ’s CosIn influence distribution should have an exceptionally

heavy upper-tail due to the exceptionally influential

 Adversarial training example Clean training example

CIFAR10 Data Poisoning Speech Recognition Backdoor

-2 0 2 4 6
-4
-2
0
2
4
6

Sa
m

pl
e

Q
ua

nt
ile

-2 0 2 4 6
-4
-2
0
2
4
6

Sa
m

pl
e

Q
ua

nt
ile

-2 0 2 4 6
-4
-2
0
2
4
6

Theoretical Quantile

Sa
m

pl
e

Q
ua

nt
ile

-2 0 2 4 6
-4
-2
0
2
4
6

Theoretical Quantile

Sa
m

pl
e

Q
ua

nt
ile

Non-Targets

Influence: Quantifies how much each training example
contributes to a test instance’s classification loss

Existing Influence Estimation Methods:
• Influence functions [1]
•Representer points [2]
•Training gradient aggregation methods, e.g., TracIn [3]

TracIn Checkpoint Influence Estimator [3]

General-Purpose Influence Estimation
CosIn ✓0 Only (ours) CosIn (ours) TracIn

Influence Functions Representer Pt. Deep k-NN

Bird ! Dog Dog ! Bird Frog ! Deer Deer ! Frog

0
0.2
0.4
0.6
0.8
1

A
U

PR
C

0 ! 1 1 ! 2 2 ! 3 3 ! 4 4 ! 5 5 ! 6 6 ! 7 7 ! 8 8 ! 9 9 ! 0

0

0.2

0.4

0.6

0.8

1

A
U

PR
C

TracInCP(z, zte) :=
T

∑
t=1

ηt ∇θℓ(z; θt) ⋅ ∇θℓ(zte; θt)

Training Ex. Test Ex. Training/Test Gradient Dot
Product Over Each Epoch

Takeaway: Influence estimation simplifies to sums of dot
products over the training set & a test (target) example

Our Goals

 Identification: Separate the clean & adversarial datasets

Target Detection: Determine if a test example is targeted zte
?=

CosIn — Our Method

Insight: must be highly influential to change ’s prediction

Observation: Existing influential estimation methods identify poison very poorly

Our Method: Cosine Similarity Influence Estimator — CosIn — adapts TracIn
to better identify highly influential examples that are likely to be attacks by:

1. Normalize TracInCP dot products by gradient norms

2. Consider all examples at any checkpoint — not just those in the minibatches

Why Normalize the Dot Products?

CIFAR10 Data Poisoning Speech Recognition Backdoor

-2 0 2 4 6
-4
-2
0
2
4
6

Theoretical Quantile

Sa
m

pl
e

Q
ua

nt
ile

-2 0 2 4 6
-4
-2
0
2
4
6

Theoretical Quantile

Sa
m

pl
e

Q
ua

nt
ile

Observation: ’s gradient magnitudes are not well
correlated with whether the training instance is adversarial

Targets

And a lot more! Text and target detection experiments are in the paper…

Train Data

Clean

Adversarial

SGD
∇!ℎ($; &")

Training

ℎ(⋅; &#)

Final Model

Test

ℎ(⋅; &#)Everything
Else Dog

ℎ(⋅; &#)Target Bird

https://github.com/ZaydH/cosin

