
Table 1: Median certified robustness (larger is
better). Each dataset’s best performing method is
in bold. Our median robustness was 20–30% larger
for classification and 3 to 4⇥ larger for regression
while simultaneously providing stronger guarantees.
For detailed results, see Sec. H.2.

Dataset Dim. (d)
FPA (ours) Random. Ablate.

Plural Run-O↵ [LF20b] [Jia+22b]

CIFAR10 1024 11 13 7 10

MNIST 784 9 12 8 10

Weather 128 4 – 0 1

Ames 352 3 – 1 1

Table 2: Classification accuracy (% – larger is
better). We report FPA’s accuracy at both RA’s
(middle, bold) and FPA’s (blue) best median ro-
bustness levels. At RA’s best median robustness,
FPA had better classification accuracy for all four
datasets. For full results, see Sec. H.2.

Dataset
FPA (ours) RA [Jia+22b]

rmed Acc. rmed Acc. ⇢med Acc.

CIFAR10 13 62.4 10 75.0 10 64.7

MNIST 12 87.2 10 96.1 10 93.1

Weather 4 76.1 1 85.3 1 75.2

Ames 3 65.5 1 84.6 1 67.2

one (RGB) pixel. Second, Hammoudeh and Lowd [HL23b] prove that certified regression reduces to certified binary

classification when median is used as the regressor’s decision function (see Sec. G.6 for details). We apply their
reduction to both FPA and RA where for instance (x, y) and hyperparameter ⇠ 2 R�0, the goal is to certify that
y � ⇠  f(x)  y + ⇠. We consider two tabular regression datasets evaluated by Hammoudeh and Lowd [HL23b].
(1) Weather [Mal+21] predicts the temperature using features such as date, longitude, and latitude (⇠ = 3�C).
(2) Ames [De 11] predicts housing prices using features such as square footage (⇠ = 15%y). These two regression
datasets serve as a stand-in for vertically partitioned data, which are commonly tabular and, as Sec. 1 mentions,
particularly vulnerable to our union of `0 attacks threat model. Note run-o↵ and plurality voting are identical under
binary classification so we only report FPA’s plurality voting regression results.

Model Architectures For vision datasets MNIST and CIFAR10, all methods used convolutional neural net-
works. Gradient-boosted decision trees (GBDTs) generally work exceptionally well on tabular data [BHL23] so for
regression datasets Weather and Ames, FPA used LightGBM GBDTs [Ke+17]. In contrast, RA’s feature abla-
tion prevents the use of tree-based models like GBDTs, so RA instead used linear models for these two datasets
(Hammoudeh and Lowd [HL23b] also used linear models for Weather). Even when restricted to linear submodels,
FPA still had better median robustness and classification accuracy than RA; see suppl. Tables 24 and 25.

Feature Partitioning Strategy For CIFAR10 and MNIST, FPA used strided feature partitioning; each sub-
model considered the full image dimensions with any pixels not in St set to 0. For Weather and Ames, FPA used
balanced random partitioning as the tabular features are unordered.

Hyperparameters Hyperparameters T (FPA’s submodel count) and e (RA’s kept feature count) control the
corresponding method’s robustness vs. accuracy tradeo↵. When optimizing patch and median robustness, hyperpa-
rameters T and e were tuned on validation data.5

Patch Robustness We consider two CIFAR10 patch attacks: (1) a 5⇥ 5 pixel square [LF20a] and (2) all 24-
pixel rectangles (e.g., 1⇥ 24 pixels, 24⇥ 1, 2⇥ 12, etc.), reporting each method’s minimum and maximum certified
accuracies across the eight valid shapes [MY21].

6.2 Main Results

Tables 1 and 2 summarize the median certified robustness and classification accuracy (resp.) for FPA and baseline
RA. Table 3 details each method’s mean certification time. Note that due to space, Tables 2 and 3 only report results
for Jia et al.’s [Jia+22b] (significantly) better performing version of baseline RA. Table 4 analyzes FPA as a patch
defense. We briefly summarize the experiments’ takeaways below. See suppl. Secs. H.2 and H.3 for the full numerical
results, including comparing the methods at additional robustness levels.

Takeaway #1 FPA simultaneously provided larger and stronger median robustness guarantees than RA. As Ta-
ble 1 details, FPA’s median certified robustness was 20–30% larger than RA for classification and 3 to 4⇥ larger for

5Secs. H.2 & H.3 compare each method’s certified accuracy across a range of hyperparameter settings.
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Feature Partition Aggregation: A Fast 
Certified Defense Against a Union of ℓ! Attacks
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Key Idea: An ensemble of submodels using disjoint feature subsets yields provable robustness to feature corruption
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Takeaway: FPA provides strong certified patch 
robustness with fewer assumptions

Prediction	Certification	Time

FPA	as	a	Certified	Patch	Defense

Mean time in seconds to certify a single prediction
Table 3: Mean certification time in seconds for FPA and Jia et al.’s [Jia+22b] randomized ablation (RA).
FPA is 2 to 3 orders of magnitude faster than baseline RA.

Dataset
RA [Jia+22b] FPA (ours)

Speedup
e Time T Time

CIFAR10 15 5.4E+0 115 7.3E�3 743⇥

MNIST 25 6.8E�1 60 2.9E�3 235⇥

Weather 45 3.1E�1 21 1.0E�4 3,134⇥

Ames 60 3.8E�1 21 3.5E�4 1,082⇥

Table 4: CIFAR10 certified patch accuracy (% – larger is better) for FPA, RA, and three dedicated
patch defenses. FPA is competitive despite making fewer assumptions and providing stronger guarantees
than patch defenses.

Method
24 Pixel Rect. Square

Min. Max. 5⇥ 5

FPA Plurality (T = 180, ours)  � 38.53 �! 37.77

FPA Run-O↵ (T = 180, ours)  � 41.60 �! 40.95

Randomized Ablation [LF20b]  � 28.95 �! 28.21

Randomized Ablation [Jia+22b]  � 37.31 �! 36.43

(De)Random. Smoothing [LF20a] 0.0 72.68 57.69

BagCert [MY21] 43.11 60.17 59.95

Patch IBP [Chi+20b] — — 30.30

regression. Importantly, FPA’s certified feature guarantees apply to evasion, poisoning, and backdoor attacks, while
baseline RA only covers evasion attacks.

Takeaway #2 FPA’s median robustness gains come at little cost in classification accuracy. Table 2 reports FPA’s
classification accuracy at two robustness levels: (1) FPA’s best median robustness (blue) and (2) RA’s best median
robustness (bold). Table 2 also reports RA’s classification accuracy at its own best median robustness (last column).
For CIFAR10 at median robustness of 10 pixels, FPA’s classification accuracy was 10.2 percentage points (pp) better
than RA (75.0% vs. 64.7%). At rmed = 13, FPA’s CIFAR10 classification accuracy was 62.4%, only 2.3pp lower than
RA’s classification accuracy at ⇢med = 10. For Weather at median robustness 1, FPA’s classification accuracy was
10.1pp better than RA (85.3% vs. 75.2%); even at rmed = 4, FPA’s classification accuracy was 76.1%, 0.9pp better
than RA at ⇢med = 1. For MNIST at median robustness 10, FPA’s classification accuracy was 3pp better than RA
(96.1% vs. 93.1%). At rmed = 12, FPA’s MNIST classification accuracy was 5.9pp lower than RA’s classification
accuracy at ⇢med = 10 (87.2% vs. 93.1%).

Takeaway #3 FPA certifies predictions 2 to 3 orders of magnitude faster than RA. Table 3 compares the mean
certification times using the hyperparameter settings with the best median robustness. To certify one prediction, Jia
et al.’s [Jia+22b] improved RA evaluates 100k ablated inputs. In contrast, FPA requires exactly T forward passes
per prediction (one per submodel).

Takeaway #4 FPA provides strong patch robustness without any assumptions about patch shape or the number

of patches. As Table 4 details, FPA certifies 41.6% of CIFAR10 predictions at r = 24 perturbed pixels (2.3% of d) –
regardless of patch shape or the number of patches. In contrast, (de)randomized smoothing’s [LF20a] (BS, s = 12)
24-pixel certified accuracy varies between 0% to 72.7% based on patch shape alone. BagCert’s certified accuracy
drops as low as 43.1% for 24-pixel column and row patches – only 1.5pp better than FPA. Unlike FPA, patch
defenses’ certified accuracy guarantees decline further or even evaporate under (1) multiple patches, (2) training data
perturbations, and (3) amorphous shapes. While less e↵ective in some settings than dedicated patch defenses that

9

Table 3: Mean certification time in seconds for FPA and Jia et al.’s [Jia+22b] randomized ablation (RA).
FPA is 2 to 3 orders of magnitude faster than baseline RA.

Dataset
RA [Jia+22b] FPA (ours)

Speedup
e Time T Time

CIFAR10 15 5.4E+0 115 7.3E�3 743⇥

MNIST 25 6.8E�1 60 2.9E�3 235⇥

Weather 45 3.1E�1 21 1.0E�4 3,134⇥

Ames 60 3.8E�1 21 3.5E�4 1,082⇥

Table 4: CIFAR10 certified patch accuracy (% – larger is better) for FPA, RA, and three dedicated
patch defenses. FPA is competitive despite making fewer assumptions and providing stronger guarantees
than patch defenses.

Method
24 Pixel Rect. Square

Min. Max. 5⇥ 5

FPA Plurality (T = 180, ours)  � 38.53 �! 37.77

FPA Run-O↵ (T = 180, ours)  � 41.60 �! 40.95

Randomized Ablation [LF20b]  � 28.95 �! 28.21

Randomized Ablation [Jia+22b]  � 37.31 �! 36.43

(De)Random. Smoothing [LF20a] 0.0 72.68 57.69

BagCert [MY21] 43.11 60.17 59.95

Patch IBP [Chi+20b] — — 30.30

regression. Importantly, FPA’s certified feature guarantees apply to evasion, poisoning, and backdoor attacks, while
baseline RA only covers evasion attacks.

Takeaway #2 FPA’s median robustness gains come at little cost in classification accuracy. Table 2 reports FPA’s
classification accuracy at two robustness levels: (1) FPA’s best median robustness (blue) and (2) RA’s best median
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For CIFAR10 at median robustness of 10 pixels, FPA’s classification accuracy was 10.2 percentage points (pp) better
than RA (75.0% vs. 64.7%). At rmed = 13, FPA’s CIFAR10 classification accuracy was 62.4%, only 2.3pp lower than
RA’s classification accuracy at ⇢med = 10. For Weather at median robustness 1, FPA’s classification accuracy was
10.1pp better than RA (85.3% vs. 75.2%); even at rmed = 4, FPA’s classification accuracy was 76.1%, 0.9pp better
than RA at ⇢med = 1. For MNIST at median robustness 10, FPA’s classification accuracy was 3pp better than RA
(96.1% vs. 93.1%). At rmed = 12, FPA’s MNIST classification accuracy was 5.9pp lower than RA’s classification
accuracy at ⇢med = 10 (87.2% vs. 93.1%).

Takeaway #3 FPA certifies predictions 2 to 3 orders of magnitude faster than RA. Table 3 compares the mean
certification times using the hyperparameter settings with the best median robustness. To certify one prediction, Jia
et al.’s [Jia+22b] improved RA evaluates 100k ablated inputs. In contrast, FPA requires exactly T forward passes
per prediction (one per submodel).
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of patches. As Table 4 details, FPA certifies 41.6% of CIFAR10 predictions at r = 24 perturbed pixels (2.3% of d) –
regardless of patch shape or the number of patches. In contrast, (de)randomized smoothing’s [LF20a] (BS, s = 12)
24-pixel certified accuracy varies between 0% to 72.7% based on patch shape alone. BagCert’s certified accuracy
drops as low as 43.1% for 24-pixel column and row patches – only 1.5pp better than FPA. Unlike FPA, patch
defenses’ certified accuracy guarantees decline further or even evaporate under (1) multiple patches, (2) training data
perturbations, and (3) amorphous shapes. While less e↵ective in some settings than dedicated patch defenses that
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CIFAR10 Certified Patch Accuracy: 
Fraction of correctly classified test instances 

satisfying the robustness criterion

Empirical	Evaluation

Classification	Accuracy
Fraction of correctly classified test predictions

Baseline: Randomized Ablation [LF20b, Jia+22b] 
ℓ! evasion defense based on randomized smoothing 

Median Certified Robustness: Median 
robustness value across a dataset’s entire test set

Takeaway: FPA provides larger and stronger 
median robustness guarantees than the baseline

Takeaway: FPA certifies predictions 2 to 3 
orders of magnitude faster than the baseline.

Table 1: Median certified robustness. Each
dataset’s best performing method is in bold. Our
median robustness was 20–30% larger for classifica-
tion and 3 to 4⇥ larger for regression while simulta-
neously providing stronger guarantees. For detailed
results, see Sec. H.2.

Dataset Dim. (d)
FPA (ours) Random. Ablate.

Plural Run-O↵ [LF20b] [Jia+22b]

CIFAR10 1024 11 13 7 10

MNIST 784 9 12 8 10

Weather 128 4 – 0 1

Ames 352 3 – 1 1

Table 2: Classification accuracy (% – larger is
better). We report FPA’s accuracy at both RA’s
(middle, bold) and FPA’s (blue) best median ro-
bustness levels. At RA’s best median robustness,
FPA had better classification accuracy for all four
datasets. For full results, see Sec. H.2.
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CIFAR10 13 62.4 10 75.0 10 64.7

MNIST 12 87.2 10 96.1 10 93.1

Weather 4 76.1 1 85.3 1 75.2

Ames 3 65.5 1 84.6 1 67.2

one (RGB) pixel. Second, Hammoudeh and Lowd [HL23b] prove that certified regression reduces to certified binary

classification when median is used as the regressor’s decision function (see Sec. G.6 for details). We apply their
reduction to both FPA and RA where for instance (x, y) and hyperparameter ⇠ 2 R�0, the goal is to certify that
y � ⇠  f(x)  y + ⇠. We consider two tabular regression datasets evaluated by Hammoudeh and Lowd [HL23b].
(1) Weather [Mal+21] predicts the temperature using features such as date, longitude, and latitude (⇠ = 3�C).
(2) Ames [De 11] predicts housing prices using features such as square footage (⇠ = 15%y). These two regression
datasets serve as a stand-in for vertically partitioned data, which are commonly tabular and, as Sec. 1 mentions,
particularly vulnerable to our union of `0 attacks threat model. Note run-o↵ and plurality voting are identical under
binary classification so we only report FPA’s plurality voting regression results.

Model Architectures For vision datasets MNIST and CIFAR10, all methods used convolutional neural net-
works. Gradient-boosted decision trees (GBDTs) generally work exceptionally well on tabular data [BHL23] so for
regression datasets Weather and Ames, FPA used LightGBM GBDTs [Ke+17]. In contrast, RA’s feature abla-
tion prevents the use of tree-based models like GBDTs, so RA instead used linear models for these two datasets
(Hammoudeh and Lowd [HL23b] also used linear models for Weather). Even when restricted to linear submodels,
FPA still had better median robustness and classification accuracy than RA; see suppl. Tables 24 and 25.

Feature Partitioning Strategy For CIFAR10 and MNIST, FPA used strided feature partitioning; each sub-
model considered the full image dimensions with any pixels not in St set to 0. For Weather and Ames, FPA used
balanced random partitioning as the tabular features are unordered.

Hyperparameters Hyperparameters T (FPA’s submodel count) and e (RA’s kept feature count) control the
corresponding method’s robustness vs. accuracy tradeo↵. When optimizing patch and median robustness, hyperpa-
rameters T and e were tuned on validation data.5

Patch Robustness We consider two CIFAR10 patch attacks: (1) a 5⇥ 5 pixel square [LF20a] and (2) all 24-
pixel rectangles (e.g., 1⇥ 24 pixels, 24⇥ 1, 2⇥ 12, etc.), reporting each method’s minimum and maximum certified
accuracies across the eight valid shapes [MY21].

6.2 Main Results

Tables 1 and 2 summarize the median certified robustness and classification accuracy (resp.) for FPA and baseline
RA. Table 3 details each method’s mean certification time. Note that due to space, Tables 2 and 3 only report results
for Jia et al.’s [Jia+22b] (significantly) better performing version of baseline RA. Table 4 analyzes FPA as a patch
defense. We briefly summarize the experiments’ takeaways below. See suppl. Secs. H.2 and H.3 for the full numerical
results, including comparing the methods at additional robustness levels.

Takeaway #1 FPA simultaneously provided larger and stronger median robustness guarantees than RA. As Ta-
ble 1 details, FPA’s median certified robustness was 20–30% larger than RA for classification and 3 to 4⇥ larger for

5Secs. H.2 & H.3 compare each method’s certified accuracy across a range of hyperparameter settings.
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Takeaway: FPA’s median robustness gains come 
at little to no cost in model accuracy.

ℓ! (Sparse) Attack: Adversary arbitrarily controls 
an unknown subset of the feature set

When is ℓ! Robustness Analysis Appropriate?
• Heterogenous feature types 

(e.g., both numerical and categorical features)

• Different feature scales

• Tabular data

• Certified patch robustness regardless of patch 
shape or number of patches

What	is	an	ℓ!	Adversarial	Attack?

Feature	Partition	Aggregation’s	Model	Architecture
Ensemble of ! submodels each trained on and evaluating a disjoint subset of the features set

Key Insight: Any adversarially perturbed feature (training or test) affects at most one submodel prediction

How	to	Partition	the	Feature	Set? Calculating	FPA’s	Robustness	Guarantee

Benefits	of	FPA	over	Previous	Work
Stronger Guarantees: Deterministic 
guarantee + robustness over the union of ℓ! 
evasion, backdoor, and poisoning attacks

Faster: Certify predictions orders of 
magnitude faster than randomized ablation

Model Architecture Agnostic: FPA supports 
any submodel architecture (e.g., random 
forests, neural networks, etc.)

Answer: Any way you want

Random Partitioning: Assign features to 
submodels uniformly at random

Deterministic Partitioning: Use domain-specific 
knowledge to craft a better feature partition

Depends on the Decision Function

Plurality Voting: [LF21]
• Plurality Label: " # = %"# ≔ argmax$ 	∑% .{$'(! ) }
• Runner-Up Label: %+, ≔ argmax$-$"# 	∑% .{$'(! ) }

/"# =
∑% .{$"#'(! ) } − ∑% .{$$%'(! ) } − .{$$%.$"#}

2

Run-Off-Election: Two-round voting election for 
multiclass classification [Rez+23]
• Round #1: Identify plurality and runner-up labels

• Round #2: Submodels revote but only for either the 
plurality and runner-up labels

" 2 = %"# 3
%
.{/! ),	$"# 2/! ),	$$% } − .{$$%.$"#} >

5
2

%+, Otherwise
Run-off Feature Robustness: Minimum certified 
robustness of either rounds #1 and #2

Certified	Feature	Robustness
Pointwise Certified Robustness: Provable 
guarantee of an individual prediction’s robustness 
against an adversarial attack

Certified Feature Robustness: Given model " 
trained on ($, &), model "′ trained on ($", &), and 
feature vector )′, a deterministic guarantee * ∈ ℕ 
w.r.t. (), -) where

#⊖ #"	⋃. ( ⊖ (" ≤ * ⇒ , = ." (" .
Feature robustness guarantees are over the union 
of ℓ! evasion, backdoor, and poisoning attacks.

Evasion Attack:
Modifies test ()#$%#) features only

Instance-wise Data Poisoning:
Modifies specific training instances 
(rows of X), including the labels (&)

Feature-wise Data Poisoning:
Modifies both training features 
(columns of $) and test ()#$%#) features

Backdoor Attack:
Modifies both training and test data

Patch Attack:
Evasion attack where the perturbation 
is restricted to a specific shape

Zayd Hammoudeh,  Daniel Lowd
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Figure 1: Feature partition aggregation example prediction for: test instance x 2 X , n = 3, d = 4, and
|Y| = 3. Feature partitioning across T = 4 submodels, where the t-th submodel uses only feature dimensions
St = {t} ⇢ [4] and training set Dt, i.e., the tuple containing the t-th column of feature matrix X (denoted
Xt) and label vector y := [y1, y2, y3]. xSt denotes the subvector of x restricted to the feature dimensions
in St. Plurality label ypl = 0; runner-up label yru = 1; and run-o↵ label yRO = 0. Under the plurality voting
decision function (Sec. ??), f(x) has certified feature robustness rpl = 0. With run-o↵ (Sec. ??), f(x)’s
certified feature robustness is rRO = 1.

Def. 1. Certified Feature Robustness Given training set (X,y), model f 0
trained on (X0,y), and arbitrary

feature vector x0 2 X , certified feature robustness r 2 N is a pointwise, deterministic guarantee w.r.t. instance (x, y)
where |X  X0 [ x  x0|  r =) y = f 0(x0).

Certified robustness r is not w.r.t. individual feature values. Rather, certified feature robustness provides a
stronger guarantee allowing all values of a feature – training and test – to be perturbed.
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