Feature Partition Aggregation: A Fast Certified Defense Against a Union of ℓ_0 Attacks Zayd Hammoudeh, Daniel Lowd **UNIVERSITY OF** zayd@cs.uoregon.edu AdvML-Frontiers Workshop Key Idea: An ensemble of submodels using disjoint feature subsets yields provable robustness to feature corruption **Types of Adversarial Attacks Empirical Evaluation** Baseline: Randomized Ablation [LF20b, Jia+22b] **Evasion Attack**: ℓ_0 evasion defense based on randomized smoothing 0 1 0 **Prediction** Modifies test (\mathbf{x}_{test}) features only 1 **Instance-wise Data Poisoning**: $f(\cdot;\theta)$ Median Certified Robustness: Median θ **SGD** Modifies specific training instances robustness value across a dataset's entire test set (rows of **X**), including the labels (**y**) Model Training FPA (ours) Random. Ablate. Dim. (d)Dataset Algorithm $\mathbf{X_1^T}$ 1 0 0 1 0 **Feature-wise Data Poisoning:** Plural Run-Off [LF20b] [Jia+22b] $\mathbf{x_2^T}$ 0 0 0 Modifies both training features 1 1024CIFAR10 11 1310(columns of **X**) and test (\mathbf{x}_{test}) features MNIST 9 7848 1210 $\mathbf{x_3^T}$ 0 0 0 1 1 1 0 Weather 1284 0 1 **Backdoor Attack**: $\mathbf{x}_{4}^{\mathrm{T}}$ 0 0 1 0 1 0 1 3523 Ames 1 Modifies both training and test data $\mathbf{x}_{\mathbf{5}}^{\mathrm{T}}$ 0 0 0 1 1 **Takeaway:** FPA provides larger and stronger Patch Attack: median robustness guarantees than the baseline **Training Feature** Training Evasion attack where the perturbation Labels (y) Matrix (X) **Classification Accuracy** is restricted to a specific shape

What is an ℓ_0 Adversarial Attack?

 ℓ_0 (Sparse) Attack: Adversary arbitrarily controls an unknown subset of the feature set

When is ℓ_0 Robustness Analysis Appropriate?

- Heterogenous feature types
 (e.g., both numerical and categorical features)
- Different feature scales
- Tabular data
- Certified patch robustness regardless of patch shape or number of patches

Certified Feature Robustness

Pointwise Certified Robustness: Provable guarantee of an individual prediction's robustness against an adversarial attack

Certified Feature Robustness: Given model *f* trained on (\mathbf{X}, \mathbf{y}) , model *f* ' trained on $(\mathbf{X}', \mathbf{y})$, and feature vector \mathbf{x}' , a deterministic guarantee $r \in \mathbb{N}$ w.r.t. (\mathbf{x}, y) where

 $|\mathbf{X} \ominus \mathbf{X}' \cup \mathbf{x} \ominus \mathbf{x}'| \le r \Rightarrow y = f'(\mathbf{x}').$

Feature robustness guarantees are over the **union** of ℓ_0 evasion, backdoor, and poisoning attacks.

Feature Partition Aggregation's Model Architecture

Fraction of correctly classified test predictions

Dataset	FPA (ours)				Rand. Abl.	
	$r_{ m med}$	Acc.	$r_{ m med}$	Acc.	$ ho_{ m med}$	Acc.
CIFAR10	13	62.4	10	75.0	10	64.7
MNIST	12	87.2	10	96.1	10	93.1
Weather	4	76.1	1	85.3	1	75.2
Ames	3	65.5	1	84.6	1	67.2

Takeaway: FPA's median robustness gains come at little to no cost in model accuracy.

Prediction Certification Time

Mean time in seconds to certify a single prediction

Dataset	RA [Jia+22b]		FPA (ours)		Speedup
	e	Time	T	Time	o h a cara h
CIFAR10	15	5.4E + 0	115	7.3E-3	743 imes
MNIST	25	$6.8E{-1}$	60	$2.9E{-3}$	235 imes
Weather	45	$3.1E{-1}$	21	$1.0E{-4}$	$3,\!134 imes$
Ames	60	$3.8E{-1}$	21	$3.5 \text{E}{-4}$	$1,\!082 imes$

Takeaway: FPA certifies predictions 2 to 3 orders of magnitude faster than the baseline.

FPA as a Certified Patch Defense

CIFAR10 Certified Patch Accuracy:

Fraction of correctly classified test instances satisfying the robustness criterion

Mathad	24 Pixel Rect	. Square
Method		
	אר. אר.	F F

Ensemble of *T* submodels each trained on and evaluating a disjoint subset of the features set

Key Insight: Any adversarially perturbed feature (training or test) affects at most one submodel prediction

How to Partition the Feature Set?

Answer: Any way you want

Random Partitioning: Assign features to submodels uniformly at random

Deterministic Partitioning: Use domain-specific knowledge to craft a better feature partition

Benefits of FPA over Previous Work

Stronger Guarantees: Deterministic guarantee + robustness over the union of ℓ_0 evasion, backdoor, and poisoning attacks

Faster: Certify predictions orders of magnitude faster than randomized ablation

Model Architecture Agnostic: FPA supports any submodel architecture (e.g., random forests, neural networks, etc.)

Calculating FPA's Robustness Guarantee

Depends on the Decision Function

Plurality Voting: [LF21]

- Plurality Label: $f(\mathbf{x}) = y_{\text{pl}} \coloneqq \operatorname{argmax}_{y} \sum_{i} \mathbf{1}_{\{y=f_t(\mathbf{x})\}}$
- Runner-Up Label: $y_{ru} \coloneqq \operatorname{argmax}_{y \neq y_{pl}} \sum_{i} \mathbf{1}_{\{y = f_t(\mathbf{x})\}}$ $r_{pl} = \left\lfloor \frac{\sum_{i} \mathbf{1}_{\{y_{pl} = f_t(\mathbf{x})\}} - \sum_{i} \mathbf{1}_{\{y_{ru} = f_t(\mathbf{x})\}} - \mathbf{1}_{\{y_{ru} < y_{pl}\}}}{2} \right\rfloor$

Run-Off-Election: Two-round voting election for multiclass classification [Rez+23]

- **Round #1**: Identify plurality and runner-up labels
- **Round #2**: Submodels revote but only for either the plurality and runner-up labels

$$f(x) = \begin{cases} y_{\text{pl}} & \sum_{i} \mathbf{1}_{\{g_t(\mathbf{x}, y_{\text{pl}}) > g_t(\mathbf{x}, y_{\text{ru}})\}} - \mathbf{1}_{\{y_{\text{ru}} < y_{\text{pl}}\}} > \frac{7}{2} \\ y_{\text{ru}} & \text{Otherwise} \end{cases}$$

Run-off Feature Robustness: Minimum certified robustness of either rounds #1 and #2

Min. Max. 5×5

FPA Plurality $(T = 180, ours)$	$\leftarrow 38$	$.53 \longrightarrow$	37.77
FPA Run-Off $(T = 180, ours)$	$\leftarrow 41$	$.60 \longrightarrow$	40.95
Randomized Ablation [LF20b]	$\leftarrow 28$	$.95 \longrightarrow$	28.21
Randomized Ablation [Jia+22b]	$\longleftarrow 37.31 \longrightarrow$		36.43
(De)Random. Smoothing $[LF20a]$	0.0	72.68	57.69
BAGCERT [MY21]	43.11	60.17	59.95
Patch IBP [Chi+20b]			30.30

Takeaway: FPA provides strong certified patch robustness with fewer assumptions

References

[Chi+20b] P. Chiang, R. Ni, A. Abdelkader, C. Zhu, C. Studor, and T. Goldstein. "Certified Defenses for Adversarial Patches," ICLR, 2020.

[LF20a] A. Levine and S. Feizi. "(De)Randomized Smoothing for Certifiable Defense against Patch Attacks," NeurIPS, 2020.

[LF20b] A. Levine and S. Feizi. "Robustness Certificates for Sparse Adversarial Attacks by Randomized Ablation," AAAI, 2020.

[LF21] A. Levine and S. Feizi, "Deep Partition Aggregation: Provable Defenses Against General Poisoning Attacks," ICLR, 2021.

[MY21] J. Metzen and M. Yatsura. "Efficient Certified Defenses Against Patch Attacks on Image Classifiers," ICLR, 2021.

[Jia+22] J. Jia, B. Wang, X. Cao, H. Liu, and N. Gong. "Almost Tight ℓ_0 -norm Certified Robustness of Top-k Predictions against Adversarial Perturbations," ICLR, 2022.

[HL23] Z. Hammoudeh and D. Lowd. Reducing Certified Regression to Certified Classification for General Poisoning Attacks," SaTML, 2023.

[Rez+23] K. Rezaei, K. Banihashem, A. Chegini, and S. Feizi. "Run-Off Election: Improved Provable Defense against Data Poisoning Attacks," ICML, 2023.

