

ForPowER: A Novel Architecture for Energy

Efficient Implementation of Fork-Join Parallelism

Using System on a Chip

A Thesis

Submitted to the Faculty

of

Drexel University

by

 Zayd Hammoudeh

in partial fulfillment of the

requirements for the degree

of

Master of Science in Computer Engineering

May 2006

 ii

TABLE OF CONTENTS

List of Tables ... iii

List of Figures .. iv

Abstract .. vi

Chapter 1 - Introduction .. 1

Chapter 2 - Power Efficient Computer Architecture .. 10

2.1 Core Set Structure ... 12

2.1.1 Cache Architecture.. 12

2.1.2 Cache Power Model .. 18

2.1.4 Processor Power Model .. 22

2.2 Network Model ... 25

Chapter 3 - Task Scheduler ... 28

3.1 Task Assignment ... 30

3.2 Task Synchronization .. 33

3.3 Processor Speed Determination .. 34

Chapter 4 - Experimental Results ... 36

4.1 Software Implementation .. 36

4.2 Hydro2D Benchmark .. 38

4.3 Experimental Results ... 39

4.4 Sensitivity Analysis ... 41

Chapter 5 - Conclusions .. 45

Bibliography ... 47

Appendix A – Nomenclature .. 51

 iii

List of Tables

Table 4.1 - Hydro2D average cache miss rates per 1000 memory references39

Table 4.2 - Kumar’s and ForPowER’s cache dynamic and static power profiles40

Table 4.3 - Energy consumption (in mJ) of the Hydro2D benchmark on Kumar’s

architecture and ForPowER ..41

 iv

List of Figures

Figure 1.1 - Fork-join program model with R jobs. Each job k, comprises a set of

tasks (Tk,l) that are executed sequentially ... 2

Figure 1.2 - Model of Kumar’s architecture for handling fork-join parallelism,

which links a central scheduler to N processors, with two level caches.

These then are connected to a synchronization processor, S. 3

Figure 1.3 - Sample fork and join. The execution time of each task is indicated

below the task name. .. 4

Figure 1.4 - Schematic of a modern SoC with DSP processors (DSP),

microprocessors (µP), input-output ports (IOP), data caches (D$), and

instruction caches (I$) connected with an interconnection fabric. 8

Figure 2.1 - The SoC layout of ForPowER. It consists of 16 processors (P), 4 multi-

ported caches, a central scheduler, and a switch fabric. Each set of 4

processors and shared cache forms a core set. ... 11

Figure 2.2 - Multiported cache architecture, with n banks ... 14

Figure 2.3 - Flag bits representing the state of a bank in the multiported cache. S

and U represent if the bank is shared or unused respectively. If the bank

is processor specific (PS), it can be set to be specific to any of the four

processors in the core set (e.g., P1, P2, P3, P4). ... 15

Figure 2.4 - Cache bank state transition diagram. Transitions between bank states

occur when there is: a fork, synchronization (Sync), transfer of data to a

different core set, processor specific data is loaded (DLPS) into the

bank, or shared data is loaded into the bank (DLS). 16

Figure 2.5 – Example six-stage pipeline for processors in ForPowER based on the

standard MIPS pipeline. Stages one through six are Instruction

Crossbar (IX), Instruction Fetch (IF), Instruction Decode (ID), Data

Crossbar (DX), Execution (EX), and Writeback (WB), respectively. 19

Figure 2.6 - A shared-medium network, where a bus connects multiple processors

(P) and multiple memories (M). ... 26

Figure 3.1 - The architecture’s central scheduler consists of a single processor (P)

with its own dedicated cache, a memory for storing task usage

information for calculating expected execution time as well as a block

transfer engine. ... 29

 v

Figure 4.1 - MESH Simulator tool flow. The application and architecture

specification files are compiled with the MESH libraries to get an

executable simulation. .. 37

Figure 4.2 - Hydro2D Benchmark flow of execution where each circle represents a

task with the number in the circle representing its task number. Tasks 4,

5, and 6 spawn another level of parallelism implementing the functions

stagf, trans1, and trans2, respectively. ... 38

Figure 4.3 - Energy consumed (in mJ) by the caches in both architectures under

varying levels of sharing of instructions and data .. 43

Figure 4.4 - Energy consumed (in mJ) by the processors in both architectures with

varying processing loads relative to the critical job 43

 vi

Abstract

ForPowER: A Novel Architecture for Energy Efficient Implementation

of Fork-Join Parallelism Using System on a Chip

Zayd Hammoudeh

Nagarajan Kandasamy, Ph.D.

Moshe Kam, Ph.D.

 We describe ForPowER, a power-efficient architecture for handling fork-join

parallelism using system on a chip. Our design consists of 16 processor cores, capable of

dynamically scaling their clock frequencies and supply voltages under different

workloads. The processors are divided into four sets of four, with each set sharing a

multiported two-level cache. This arrangement reduces the energy wasted on powering

redundant data. ForPowER also uses a central scheduler, which assigns tasks to the

processors, taking advantage of the shared memory and of the processors ability to scale

their clock frequencies under varied workload.

 We also describe power models for all components of the SoC design, namely the

caches, processors, and the network.

 We show that in simulation, ForPowER outperforms the most widely used fork-

join architecture on the SPEC-95 Hydro2D benchmark, consuming over 65% less energy.

 1

Chapter 1 - Introduction

Since the early 1990’s, there has been explosive growth in the performance and

capabilities of computer systems, with an increase in speed of over 150 times [28]. One

of the catalysts for this has been the exploitation of parallelism in software [1].

Parallelism is the level at which multiple instructions in a section of code can be issued

and performed concurrently. In traditional serial computing, each task must be executed

sequentially on a single processing element. In contrast, a parallel computer is “a

collection of processing elements that communicate and cooperate to solve large

problems fast” by distributing those portions of a program that can be parallelized to be

executed simultaneously on different processors. Extracting the benefits of parallelism

involves incorporating additional hardware into computer systems. As opposed to

achieving improved performance via adding supplementary functional units (e.g.

additional pipelines, ALUs, floating point units) to a single processor, the most common

approach to parallel computing is to link multiple processing units together using a

communication architecture. This prevents the processors from becoming unnecessarily

complex by reducing the total number of functional units on a single processor by using

multiple, connected processors.

This thesis will focus on one specific type of software parallelism known as fork-

join parallelism. Fig. 1.1 shows the execution-flow of a program that fits fork-join

parallelism, or can be made to fit that paradigm. Following a section of a program where

instructions are performed sequentially, the subsequent execution forks into R

independent jobs. Each job is comprised of a set of tasks that must be executed

sequentially. For a given job k, there are rk tasks. While each job’s tasks need to be

 2

Figure 1.1 - Fork-join program model with R jobs. Each job k, comprises a

set of tasks (Tk,l) that are executed sequentially

Executed sequentially, the R jobs can be scheduled to different processing units to

execute in parallel. Task l within job k has an expected execution time. As such, the

total execution time of job k is the sum of the execution times of all rk tasks. When all R

jobs have completed execution, they synchronize, which entails waiting for the remaining

jobs to complete and performing any necessary merging of their outputs. Once

synchronization completes, sequential execution can continue.

Previous attempts to design parallel computers aimed at fork-join programs have

expanded on work performed by Kumar in [3]. It has been used as the basis for other

work in the area, including [4] and [30].

 Kumar’s architecture, shown in Fig. 1.2, consists of a central scheduler that

functions as a simple Round Robin scheduler [33]. Upon arrival of a job at the scheduler,

 3

Figure 1.2 - Model of Kumar’s architecture for handling fork-join

parallelism, which links a central scheduler to N processors, with two level

caches. These then are connected to a synchronization processor, S.

the job is sent over a point-to-point network [33] to one of N homogeneous (identical)

processors in the system. Each processor has its own dedicated, two-level cache that

stores the data sent by the scheduler and any variables created during execution. Upon

completion of all the jobs in a fork, the processors send their data to the synchronization

processor S, which synchronizes all of the jobs.

 Despite its use, Kumar’s architecture suffers from serious limitations. The most

notable among them is that the architecture fails to take advantage of the fact that not all

jobs in a given fork have the same execution time. In a fork, the set of jobs that has the

largest execution time constitute the critical job. The critical job provides a lower bound

for the execution time of the entire fork; this arises from the fact that before

synchronization can occur, all other jobs must wait for the critical job to complete. By

reducing the execution time of the critical job, the execution time for the entire fork is

reduced.

Since those jobs that are not the critical job must wait for the critical job to

complete before synchronization can occur, a time slack exists in such jobs. This allows

 4

for the overall execution time of those jobs that are not critical to be delayed until their

execution time equals the execution time of the critical job, without impacting overall

system performance. When the jobs are assigned to different processors to be executed,

the critical job should always be run at the maximum operating frequency, because it is

the one requiring the most time to complete. An effective way to slow down the

execution of non-critical jobs is to assign them to processors with clock speeds less than

the processor executing the critical job (this technology was not available to Kumar when

he developed his architecture). Work in dynamic prediction of expected execution time

for a given section of a program, which allows for the adaptive scheduling of jobs, has

been done by Gergeleit [5].

Fig. 1.3 is a demonstrative example of a fork-join with the format of this figure

Figure 1.3 - Sample fork and join. The execution time of each task is

indicated below the task name.

 5

similar to that found in Fig. 1.1; the circles contain the name of each task and its

corresponding execution time. Since the total execution time of a job is the sum of the

execution times of all the tasks that constitute it, job2 (i.e., Task2,1 and Task2,2) is the

critical job with a total time of 10 compared to 5 for the job1 (Task1,1 and Task1,2) and 1

for the job3 (task). Those tasks not part of the critical job (e.g. Task1,1, Task1,2, and

Task3,1) can be scheduled to slower processors without affecting the net time to complete

the fork. Since the sum of the execution times of Task1,1 and Task1,2 is half that of the

critical job, the processor that is executing those tasks can run at half the speed as the one

executing the critical job (i.e., Task2,1 and Task2,2), as shown in [29] that execution time

scales linearly with processor speed for tasks that are executed on the CPU. Similarly,

the processor executing Task3,1 can run at one-tenth the speed of the critical job. This

allows for near simultaneous synchronization, which has the distinct advantage that by

slowing the processor speed of non-critical jobs, significantly less power will be

consumed than by running at faster speed and idling the processor [18].

 Moreover, each processor executes its required workload independent of the other

processors. However, Martorell in [7] suggested grouping different processors into

different sets of processors. Each set of processors consisted of a master processor and

possibly several slave processors; the master and slaves processors had different roles

with the master processor starting executing and then spawning, if necessary, any

parallelism encountered to the slave processors. Through this grouping arrangement,

Martorell notes that the processors in a group are able to cooperate with each other to

complete execution of encountered parallelism more efficiently. Similarly, Martorell

 6

notes that by grouping processors into smaller groups, it then makes it worthwhile to

attempt to exploit multiple levels of parallelism that can be present in fork-join programs.

 Another limitation of Kumar’s architecture is that each of the N processors is

assigned a dedicated cache. The authors of [6] note that the jobs in a fork all share a

portion of data and instructions. As such, it is inefficient to give each individual

processor a dedicated cache as it takes additional network resources to resend the shared

data to each of the processors, as well as expend energy preserving multiple copies of this

shared data in these caches.

 In addition to the power saved by using shared memory, others have studied the

performance and implementation benefits of shared memory for fork-join programs.

Quinn in [6] noted that by allowing for shared memories between the different jobs in the

fork, the synchronization processor can use the shared program variables that are stored

in these shared memories, which drastically simplifies synchronization. Similarly, if one

job in a fork needs to send it a message to another job, it can do so by writing to a shared

memory location. In contrast, Kumar’s architecture used a message passing strategy,

which is a form of communication where messages are sent through the network to

communicate with the different jobs. As such, when synchronization occurs, the

different processors must send the data through the network and create new variables at

the synchronization processor. The sending of the requisite data and creating the new

variables is additional overhead added by this communication strategy.

Furthermore, the architecture proposed by Kumar in [3] did not take advantage of

a new and increasingly popular method for linking multiple processing elements known

as System on a Chip (SoC). An SoC design is an application specific integrated circuit

 7

(ASIC) which consists of different (i.e. heterogeneous) types of components on a single

chip that communicate with each other and work together. Potential SoC nodes include:

memories, I/O devices, digital signal processors (DSPs), and central processing units

(CPUs). These components are linked through a system of interconnects between the

different components. Types of interconnects include: a shared medium (e.g. bus) and a

point-to-point network. Through this collection of diverse nodes, an SoC serves as a

complete computing system that can execute software or programs stored in on-chip

memories or inputs from the I/O ports.

Compared to computer systems, such as Kumar’s [3], where the nodes are not all

connected to each other on a single chip, system on a chip has several distinct advantages

for a small number of nodes (typically under one hundred). SoCs are designed with the

capability to provide error-free communication between nodes [21]; this is possible

because of the fact that all nodes are connected on the same chip with reliable

communication channels. This ability leads the designers of SoCs to assume a fully

deterministic interconnect architecture for communication (i.e., all messages are

guaranteed to be delivered) as well as value resolution (the intended message will be

correctly extracted from the received data), significantly simplifying the architecture for a

low number of nodes.

Fig. 1.4 is a schematic of a multiprocessor SoC. The model has heterogeneous

(i.e. nonuniform) placement of memory units as well as heterogeneous processing units.

Since the architecture of SoCs is tuned and specialized to function optimally for a

specific application or restricted set of related applications, selection of components and

the design of the chips are nonstandard.

 8

Figure 1.4 - Schematic of a modern SoC with DSP processors (DSP),

microprocessors (µP), input-output ports (IOP), data caches (D$), and

instruction caches (I$) connected with an interconnection fabric.

The overall performance of an SoC is based on three criteria: latency of

execution, area efficiency, which is the size of the chip required for all the hardware, and

energy efficiency, which is the energy consumed by the chip during execution. In

embedded systems and portable devices, energy efficiency in SoCs is becoming a key

design constraint. Ideally, it is important to limit the overall power consumption of the

system without affecting the overall execution time of programs [2].

When designing a low-power computer architecture for a system on a chip, it is

insufficient to solely focus on minimizing the energy dissipated by the processing units.

The power dissipated by the interconnection networks linking the nodes together can be

substantial; in the MIT RAW Network on a Chip Architecture, 36% of overall chip

power was dissipated in the interconnects [31].

 9

This thesis develops ForPowER, the Fork-Join Power Efficient aRchitecture. It is

an energy efficient SoC design to exploit fork-join parallelism of the type shown in Fig.

1.1. By simulating the execution of the SPEC-95 Hydro2D benchmark that solves the

hydronamical Navier-Stokes equations, we compare the energy consumed by ForPowER

with Kumar’s architecture shown in Fig. 1.2. The proposed ForPowER architecture is

shown to consume 65% less energy than Kumar’s design. We accomplish this by

allowing ForPowER to dynamically slow down processor speeds of non-critical jobs

allowing them to save significant portions of the energy. The power savings are further

improved by permitting the sharing of data between the processors significantly, which

limits the power wasted on redundant data.

The rest of this thesis is as follows. Chapter 2 describes ForPowER, our

architecture for efficiently handling fork-join parallelism. Chapter 3 details ForPowER’s

scheduler and assignment algorithm for distributing jobs in the SoC. Chapter 4 presents

our experimental results and ForPowER’s load sensitivities. Chapter 5 discusses our

conclusions and suggestions for future work.

 10

 Chapter 2 - Power Efficient Computer Architecture

The chapter will discuss ForPowER, our energy-efficient SoC for handling fork-

join parallelism. Specifically, we will describe the caches, processors, and network

topology that are being used. We also explain how power consumption is modeled in all

three parts of the SoC.

Since fork-join programs only require a small number of processing elements (as

was explained in [7] that the number of jobs in fork join programs does not usually

exceed 64), the main constraint of scalability in SoCs is not a factor. The architecture

discussed in this thesis selected 16 processors, as this is the standard size used in other

studies such as [7]. All derived formulas and requisite hardware was designed based on

16 processors but is easily expandable to 32 or 64 nodes.

Fig. 2.1 is the proposed layout of ForPowER. ForPowER consists of multiple

core sets (which are made up of 4 processors that share a single cache), an

interconnection network, and a scheduler. These components will be designed to reduce

the energy consumed.

We propose the use of four identical core sets. Each core set consists of four

processors sharing a unified (i.e., it contains both instructions and data) multiported, two-

level, banked cache [32]. The cache can be accessed simultaneously by all the

processors. Moreover, all processors can be run at different clock frequencies (and in

turn different supply voltages from the power source to the processor) to limit the power

dissipated by the system.

The interconnection fabric is a router based, point-to-point network. All four core

sets and the scheduler have a dedicated network interface. Each of the routers at the

 11

Figure 2.1 - The SoC layout of ForPowER. It consists of 16 processors (P), 4

multi-ported caches, a central scheduler, and a switch fabric. Each set of 4

processors and shared cache forms a core set.

interfaces is linked to all other routers, making the network fully connected at the router

level.

The scheduler is designed as the central unit that assigns each task to a processor

in the system, schedules synchronization, and sets the processor speeds. The scheduler

uses an energy-efficient cost-based algorithm for task assignment that is detailed in

Chapter 3.

 12

2.1 Core Set Structure

 The core set consists of two distinct components, the multiported cache and the

four processors. Both are designed to limit power consumption.

2.1.1 Cache Architecture

 The assumption throughout the literature is that all jobs created by a fork rely on

some core of data that all the jobs use, and that data is left unchanged. Since each task

operates independently only on the data it needs, no cache coherence protocol [1] to

maintain integrity of the shared data is required, as data shared between jobs are never

modified. In addition, rather than giving each processor a private cache, which would

each be sent duplicate copies of the data, it is more energy efficient for multiple

processors to be linked to a shared cache that contains only one copy of this shared data

set. By using a shared cache, energy is saved by (1) eliminating the need to power

identical blocks across multiple caches, (2) reducing network traffic by decreasing the

number of copies of the data that need to be transmitted, and (3) limiting or eliminating

the need to send all data to a single processor (e.g. the S processor in Kumar’s

architecture) when synchronizing. Note that if all the jobs are run off the same shared

cache, then all the data is already present for any single processor to operate.

 There are multiple methods to implement a shared cache. The simplest method is

to share a single-ported cache amongst multiple processors. Although implementing a

 13

shared single-ported cache requires less board area and is less complex to implement than

a multiported cache, it causes significant degradation of performance and increases the

execution time of parallel programs. By increasing the number of ports on a data cache

to five (one for each of the four processors and the network interface), it has been shown

in [9] that a 24.7% increase in performance can be obtained compared to using a single

port. Therefore, a multiported cache was selected as it allows all processors and the

network to access the cache simultaneously.

 Multiported caches are of three distinct types: ideal multiporting, time-division

multiplexing, and multiple independently addressable banks [10]. Ideal multiplexing

allows each cache block to be simultaneously accessed by all cache ports. This structure,

however, is impractical and never applied in industry because of the costs in area, power

consumption, and access time [10].

 Time division multiplexing type multiported caches utilize time to achieve virtual

ports in a cache. Memory is accessed twice in each cache clock cycle (on both the rising

and falling edges) allowing it to operate at twice the processor speed. However, this

scheme is impractical because of its lack of scalability to multiple ports [10]. Its

impracticality is exacerbated in ForPowER since processor cores are running at different

speeds, making implementation of the protocol overly complex.

Given the impracticalities of the other cache organizations, the best solution for

ForPowER is to use a recently developed technique that was not available to Kumar

known as multi-banking to achieve multiple ported memories. Multibanking involves

dividing the memory into multiple banks, the number of which is defined by the

 14

Figure 2.2 - Multiported cache architecture, with n banks

application space. Each bank is in essence a single-ported cache capable of handling a

single access per cycle. The processors or the network access the individual caches

through the use of a crossbar, which is a switch that connects the four processors and the

network to the cache banks, as described in [11]. Fig. 2.2 shows the overall structure of

the shared caches; it consists of n banks that are linked to the four processors and the

network through the crossbar.

As previously noted, when multiple nodes try to access the cache, it must first go

through the crossbar switch to determine the appropriate bank to connect to at which

point it can then extract the data from that bank. As such, cache accesses require two

clock cycles to complete; the first cycle is to use the crossbar to decode the proper bank

while the second is to retrieve the data from the bank. If multiple nodes try to access the

same bank in the same clock cycle, one of the nodes is granted access to the bank, while

 15

Figure 2.3 - Flag bits representing the state of a bank in the multiported

cache. S and U represent if the bank is shared or unused respectively. If the

bank is processor specific (PS), it can be set to be specific to any of the four

processors in the core set (e.g., P1, P2, P3, P4).

the remaining nodes wait till that memory operation completes and then attempt to access

the bank again.

To determine how the multiple nodes access the different cache banks, the banks

can be in one of three states: shared, processor specific, or unused. How to divide the

data between the banks and what its state should be when data is loaded is determined at

compile time. The state of the caches is changed dynamically by the processor or the

network and stored in specific memory locations in each bank that are eight bits long.

Fig. 2.3 shows the bit association to the cache banks’ states. Bits one through three are

active-high flags for whether that bank is either shared, processor specific or unused

respectively. Next, given a bank is processor specific (i.e., used by only one processor),

bits four through seven are flag bits that signify which of the four processors in the core

set the bank is associated with. Bit eight is not used.

Shared cache banks contain data used by more than one processor in the core set.

For instance, if all the processors in the core set rely on shared data, it can be stored in a

shared bank and accessed by all nodes.

 16

Processor specific banks are used to create cache locations that can only be

accessed by one specific CPU. This eliminates contention on memory operations on data

that are needed by only one task.

 Unused banks are those that contain no useful data. This occurs when no data

have been stored in a location yet or if the data in that bank are no longer needed.

 Fig. 2.4 is a simplified state diagram describing how a cache block transitions

between states with transition abbreviations. All blocks are initially unused. Unused

blocks can transition into the shared or processor specific states depending on if the data

loaded is shared (DLS) or if the data loaded is processor specific (DLPS). Once a bank is

Figure 2.4 - Cache bank state transition diagram. Transitions between bank

states occur when there is: a fork, synchronization (Sync), transfer of data to

a different core set, processor specific data is loaded (DLPS) into the bank, or

shared data is loaded into the bank (DLS).

 17

in no longer unused, the events that can cause a transition between states include: a fork

(F), a task which once completed only leads to one child (OC) task that can then execute,

a synchronization (SYNC), and transfer (T) to a different core set.

 When a bank is in the shared state, if the sequential execution forks or if a job

finishes executing and is ready to synchronize, then the data should remain in the shared

state until the synchronization has completed.

A bank in the processor specific state should remain in that state if it only has one

child task (i.e., it is not a fork or synchronization) because it is still only needed by that

processor. However, if a synchronization of a job on a specific processor is reached and

synchronization for that processor will be completed on its core set, as determined by the

central scheduler shown in Fig. 2.1, the bank associated with that processor should switch

from the processor specific to the shared state. On the contrary, if synchronization is to

occur on another core set, the data should be sent across the network.

 Once all the data in a cache bank is no longer needed because synchronization has

completed or the task has been transferred out of the core set, then the cache returns to

the unused state.

 Both the L1 and L2 cache are unified (i.e., contain both instructions and data).

Such a configuration has been shown in [12] to perform as well or better on fork-join

programs than dedicated instruction and data caches.

The L1 cache is 64 kB large, divided into four equally sized banks (16 kB each).

The L2 cache is unbanked and 2 MB large. The L2 cache need not be banked as it is rare

that there will ever be more than two L1 misses simultaneously, eliminating the need for

banking as the L2 cache requires only one port.

 18

2.1.2 Cache Power Model

 Power is dissipated within a cache in two distinct ways. One way involves the

dynamic energy spent to read or write a value to a cache location. In addition, static

energy is spent to preserve the data already in the cache. For a cache level, x, the energy

(in Joules) expended is:

xxx LEDEE  (1)

where DEx is the dynamic energy consumed by cache level x and LEx the leakage energy

consumed by x.

 The overall dynamic energy of a cache is defined as:

exNNdeNNDE misshitmisshit *)(*)2*( (2)

where de is the energy consumed for one memory access, ex the energy used in the

crossbar in a multiported cache access (in a standard private cache, ex = 0), Nhit the

number of cache hits (success attempts to access the cache), and Nmiss is the number of

cache misses (unsuccessful attempts to access the cache). Note that Nmiss is multiplied by

two in (2) because when a miss occurs, the memory is accessed twice, first when you

check to see if the data is present in the cache resulting in a miss and also again to get the

data value after it has fetched and placed in the cache.

 The leakage power of a cache is:

 19

leaNALE * (3)

where NA is the number of cache blocks that are in use and not turned off while lea is the

leakage energy of a cache block.

2.1.3 Processor Architecture

 The processors in the core set are homogeneous (i.e. structurally identical)

processing units with identical architectures and instruction sets. The processors consist

of simple pipelines with six or more stages. Fig. 2.5 is one such example. This pipeline

is similar to the one employed by MIPS processors [32]. The primary difference is that

memory access are two cycles long. The crossbar stages used are described in section

2.2.1. Two memory access stages are required, the first to get the instruction from

memory and the second to get any necessary data required by that instruction. The

pipeline consists of six stages, the Instruction Crossbar (IX) where the crossbar is

powered before the instruction is retrieved from memory, Instruction Fetch (IF) when the

Figure 2.5 – Example six-stage pipeline for processors in ForPowER based

on the standard MIPS pipeline. Stages one through six are Instruction

Crossbar (IX), Instruction Fetch (IF), Instruction Decode (ID), Data

Crossbar (DX), Execution (EX), and Writeback (WB), respectively.

 20

instruction to be executes is fetched from memory, Instruction Decode (ID) where the

instruction is decoded and any necessary data retrieved from the registers, Load/Store

Crossbar (DX) where the crossbar for the data memory is powered, Execution (EX) when

the instruction is executed, and Writeback (WB) where the data is written into the

memory or appropriate register.

 Most current processors are CMOS based [18]. Therefore, most of the power is

consumed when the CMOS gates switch between logic true and logic false. This

switching power is proportional to the clock frequency and the square of the supply

voltage. As such, down scaling the frequencies of the processor’s clock or the supply

voltage can dramatically reduce the power of this CMOS logic (this is known as dynamic

voltage scaling) [13].

 An additional benefit of dynamically changing the frequency and voltages of the

processors is that they will dissipate significantly less power. Similarly, if an area of the

chip gets too hot, the clock speed of the processors in the area of the hotspot can be

throttled to allow for the additional built up heat to be dissipated and then return to

normal operation [39].

This approach to decreasing power consumption can have three specific

drawbacks. First, in previous processor designs, dynamically changing the clock

frequency took large amounts of time in comparison to overall job execution. However,

it has been shown in [14] that current modern processors can switch from its current

clock frequency to a target speed in only one clock cycle. This allows for negligible

overhead between switching clock frequencies and supply voltage levels. Moreover,

reducing the clock frequency inherently reduces performance, as clock frequency is

 21

inversely proportional to the circuit delay [29]. This was considered unrealistic for many

application spaces. This does not apply in fork-join parallelism because this reduction in

performance of non-critical jobs actually has no effect on the overall net performance of

the system, as long as their execution time is less than that of the critical job. As noted in

Chapter 1, only the critical job needs to be run at maximum frequency. The slack

available in the non-critical jobs allow those jobs to be run at a slower clock frequency,

saving significant energy, as high as 90% [15]. Third, dynamically scaling the processor

voltage and frequency requires additional hardware. The hardware required to modify

the clock frequency is simple [38]. Dynamically scaling the processor supply voltage

necessitates a few distinct hardware components and is more complicated than the

hardware for scaling the frequency [38].

 To effectively achieve maximal power savings, the different speeds at which the

processors can run must be properly selected. Current processor designs permit 6-11

different processors speeds. Moreover, standard practice involves spacing each of these

speeds equally for better granularity [16]. As such, we used in ForPowER a modified

version of the Intel Pentium M 1.6 GHz processor, Intel’s low power mobile processor,

since it provides good performance, while running at significantly less power (only 10

Watts at maximum frequency) compared to similar CPUs [16]. We selected to allow it

to throttle to clock speeds of 400 MHz, 600 MHz, 800 MHz, 1000MHz, 1200 MHz, and

1400 MHz, as this is the mapping of Intel’s 1.6 GHz Pentium M onto to a maximum

clock frequency of 1.4 GHz [17] .

 22

2.1.4 Processor Power Model

 As mentioned in section 2.1.3, modern processors are composed primarily of

CMOS logic. Mudge in [18] defines the power consumption in CMOS logic circuits (in

Watts) as:

DynamicStaticLeakageCMOS PPPP  (4)

This equation consists of three components. First, the leakage power is the base amount

of power lost due to leakage current regardless of the CMOS’ gates or processors state

(executing or idle). It is defined as:

leakLeakage VIP  (5)

where V is the supply voltage and Ileak is the leakage current in the gates. Leakage power

consists of approximately 2% of total power consumed in current generation CMOS logic

[19].

 The second component in CMOS power dissipation is static power, which as a

result of the short circuit current Ishort that flows between the supply voltage, V, and

ground for a small time period, τ, when the CMOS gate’s logic switches. Static power

consumption is determined by:

fAVIP shortStatic  (6)

 23

given that A is the average number of gates that switch per cycle. Static power currently

accounts for 8% of total power consumption in processors [19].

 The final term is the dynamic power consumption; it accounts for a majority of

the power dissipation in CMOS, approximately 90% [19]. It is caused by the actual

charging and discharging of the capacitive load, C, during each gate’s operation. It is

defined as:

fACVPDynamic
2 (7)

For a given supply voltage, processors are run at a maximum clock, fmax, so as to achieve

the highest performance. fmax is related to the supply voltage, V, by the relationship:

 
V

VV
f Threshold

2

max


 (8)

where Vthreshold is the threshold voltage of the CMOS gates that defines if it is in the high

or low logic state. As such the maximum clock frequency is approximately linearly

proportional to the supply voltage. It is then possible to simplify the dynamic power

consumption to:

3
maxfPDynamic  (9)

where α is the combined coefficient from A and C.

 24

 When dynamic frequency scaling is performed on a processor, for the most part, it

is only the dynamic power consumption that is affected. Therefore, only 90% of the

overall power of the processor is scaled. As such, given the relationship in (9), you can

determine the power utilized for a given f which is less than or equal to fmax. Therefore,

the dynamic power can be rewritten:

3
maxmax*9. fP  (10)

If the processor undergoes dynamic frequency scaling and is run at a new frequency f ’,

which is less than or equal to fmax, the new value of the dynamic power, P’, is:

 3'' fP  (11)

where P’ is less than or equal to .9Pmax. By dividing (11) by (10), we get:

 
3

max

3

max

'

9.

'

f

f

P

P



 (12)

This then simplifies to:

 
3
max

3

max

'
*9.'

f

f
PP  (13)

 25

This means the power for a different clock frequency can be approximated knowing only

the maximum clock frequency and the power it dissipates at that frequency. This

significantly simplifies determining the power over any chosen frequency spectrum.

 It is also important to note that when the processor power for a given speed has

been determined, there are two distinct power profiles for the chip, one for when it is

executing and the other for when it is idle (i.e. executing NOOP’s, which are assembly

language instructions that do not execute anything). The executing power is equivalent to

the power determined by the maximum power and (13). The idle power consumption is

simply 25% less than the power consumed at a given processor speed, while the

processor is executing [20].

 Moreover, it is necessary to note the fact that the percentages stated for each type

of processor power applies to current generation processors. In future processors where

the size of the logic gets increasingly small (e.g. 90 nm), the leakage power becomes

more critical and can represent up to 50% of total processor power [36]. This would

decrease the benefits due to dynamic frequency scaling.

2.2 Network Model

 Within any SoC design, an interconnection fabric must exist that links all nodes

together so they can communicate effectively. Within current designs, two design

paradigms are in use, specifically shared medium architectures and point-to-point

networks [33].

 26

Figure 2.6 - A shared-medium network, where a bus connects multiple

processors (P) and multiple memories (M).

 First, shared medium architectures are the simplest of all interconnection models.

In this model, all nodes share a single communication medium. Fig. 2.6 is an example of

a shared medium network (in this case a bus) connecting multiple processors and

memory devices. Since there is only one communication channel, only one node can

drive the network at anyone time. This leads to a bottleneck as every other processor

must stall until the network becomes free. Moreover, when a message is sent, it must

reach all nodes along the communication channel before another message can be sent.

As such, messages take significantly longer to travel through the network, since

transmission continues even if the desired destination has already received the message.

Shared medium networks are also extremely inefficient in low power architectures as

every message must be broadcast to every single node, even if it is not the intended

receiver, at greater energy cost [21].

 Given the major drawbacks of a shared medium network, we decided to go with a

point-to-point network. Point-to-point networks allow for connections between a single

host and single receiver, reducing the cost to send each message as well as the time for it

to propagate through the network. ForPowER’s network consists of five routers. Each

core set is given its own router that connects it to all the processors as well as the shared

cache. Moreover, the scheduler is given its own dedicated router. In addition, each

 27

router is connected to all of the other routers to allow for communication between all the

core sets and the scheduler.

 It has been shown in [22] for a network topology similar to the one we are using

with similar load that the per byte cost to transmit data through the network is

approximately 46.25 pJ.

 28

Chapter 3 - Task Scheduler

 This chapter details ForPowER’s scheduler for efficiently assigning tasks to the

different processing cores, previously presented in chapter 2. We will also outline the

scheduling algorithm used by the scheduler and how it determines the processor speed for

a job.

Since a large percentage of the overall power dissipation of an SoC can be

dissipated by sending duplicate data over the network as well as powering this duplicate

data multiple caches, an intelligent algorithm for assignment of the tasks to the individual

cores is crucial. However, the assignment of the tasks to the independent processors must

be done in such a way as to limit or negate any impact on the overall execution time of

the program. The scheduler determines the best method for allocation of each task to its

respective core. Tasks are assigned in their entirety to a single core and executed by that

core till its completion (i.e., without preemption [34]).

An assumption, which is the predominant one in the literature [3], is also made

here that the fork-join structure of the program is deterministic (i.e., the number of

forks/parallel jobs is known a priori). Moreover, the number of parallel jobs never

exceeds the number of processing nodes (although this model only describes 16 nodes

meaning a maximum of 16 parallel tasks, this model has scalability to a larger number by

adding more cores to a single cache or adding more core sets, if required by the

program’s structure). We assume that the expected execution time is known in advance

to an acceptable level of accuracy.

The scheduler proposed in this thesis is based off of the fault-tolerant scheduler

proposed in [5]. The scheduler determines all the scheduling variables for the entire

 29

system including where to assign each task, the individual processors’ clock frequencies

and voltages, and where to synchronize all the jobs in a fork.

Fig. 3.1 shows the system's task scheduler. It has a dedicated processing unit to

make decisions regarding where to route specific messages as well as determine the

average execution times for each of the tasks. The execution time statistics for each of

the tasks is stored within the scheduler. It is updated dynamically based on each task’s

execution time. There is a dedicated private cache for use by the scheduler’s processor.

 When the scheduler decides what data or instructions should be sent to a specific

processor, a message is sent to the scheduler’s block transfer engine to efficiently

transmit blocks of data from either the instruction memory or the attached main memory

that stores the source data. The block transfer engine (BTE) also breaks up large blocks

of data into individual packets that can then be sent across the network. By having a

dedicated BTE, it frees up the scheduler’s processor to handle other necessary

Figure 3.1 - The architecture’s central scheduler consists of a single

processor (P) with its own dedicated cache, a memory for storing task usage

information for calculating expected execution time as well as a block

transfer engine.

 30

calculations, including updating the usage information of tasks as well as assigning them

to cores.

 The router in the figure is the interface of the BTE and processing unit to the

network.

3.1 Task Assignment

 Jobs are assigned to specific cores in the form of a queue. In a certain time

period, a group of tasks, either from a fork and/or multiple parallel tasks, needs to be

assigned. The scheduler determines the overall lowest cost associated with assigning a

specific task to a specific processor; once that has been found, the data are sent by the

block transfer engine to the cache associated with the processor, even before it has

finished completing its previous execution. By sending it in advance, the time between

the completion of the previous task and the beginning execution of the next is decreased

to approximately only the time required to send data, if any, that is on another cache

where a processor is still executing. The scheduler also sends the speed at which that

processor should run for that task.

When assigning tasks to the nodes in this architecture, the cost is determined by

four specific and distinct terms, with the overall cost for all tasks minimized. The

assignment cost for task, i, on processor, j, is defined as:

  ysferPenaltNeedtoTranForkCostnUseProcessorIwardLocationRec ji , (14)

 31

First, the location reward is the added benefit from staying within the same core

set/processor instead of moving to a different location. By remaining on a processor

attached to the same cache, the need to transfer data to another cache, which would waste

time and energy in the network, is eliminated. Likewise, by staying in the same

processor, assuming the next task is not a fork, there is no need to rescale the frequency

or voltage of the processor itself. The reward is defined as:

  pc sswardLocationRe 1 (15)

where sc and sp are binary terms representing whether processor j is in the same cache set

and same processor as task the task whose execution preceded i, respectively. α and β are

the rewards themselves for remaining in the same core set and processor respectively.

These rewards are always greater than zero, and their sum is less than or equal to one.

 ProcessorInUse is a penalty term from (14) that is used to prevent assignment of

jobs to cores that already are in use and defined is as:

jsMnUseProcessorI  (16)

where sj is a binary term that represents whether processor j is currently idle or will finish

executing before a certain preset time. M represents the Big M method in assignment

issuing, where M is a disproportionately large positive number that is an overwhelming

penalty to prevent any jobs being assigned to that processor [8].

 ForkCost represents the expense of assigning task i to a core if it is the first task in

a new fork. By keeping all of the jobs of a fork on as few core sets as possible, energy

 32

that would have been dissipated by originally sending the instructions and data through

the network to all the core sets, as well as sending the data back to a single core set to

synchronize at the join, is significantly reduced. Moreover, to give later assignments

more flexibility, the jobs with the higher expected execution times should be placed on

the core set with the largest number of open nodes so the smaller jobs can be moved more

easily, if necessary. As such, the cost for a fork is:

  1
1

exp 


fo nuTn
ForkCost

ij

 (17)

where noj is the number of processor cores open on processor j’s core set. Texpi is the

expected execution time for the task i while nf is the number of jobs in the new fork that

is to be issued. u(nf) represents the Heaviside unit step function:

 











 0 ,0

0 ,1

f

f

f
n

n
nu (18)

If the next task is not a fork, then the fork cost simplifies to one, and would be a standard

cost across all cores.

 The final term in (14) is the NeedtoTransferPenalty represents the need to move a

specific job that is being executed on a core set that has a large number of open cores to

one with less open core sets; the motivation for this is that it is better to leave core sets

with as many open processors as possible to absorb a possible fork. It is inefficient to use

only a small percentage of processors on a core set when there are nodes free elsewhere.

 33

As such, it is beneficial to move these tasks to another core set. ForPowER uses a cost

function defined as:

   31 
jof nnuMysferPenaltNeedtoTran (19)

This term is used to move a task off a core set only if it is not the first task in a fork, and

the rest of the processor cores on j’s core set are idle. This term is easily adaptable to

core sets with a different number of processors.

Given the cost function to assign a job i to processor j from (14), the cost to assign

each job to each of the 16 processors is calculated. These costs are placed into a matrix

with R rows (one row for each job in the fork) and 16 columns (one column for each

processor). The cost, ci,j, to assign job i to processor j is placed in the cell that

corresponds to row i and column j. Using the Hungarian method on that matrix of costs,

the optimal assignment of the R jobs to the 16 processors is determined [35].

3.2 Task Synchronization

 Synchronization occurs when all jobs have completed execution. For

synchronization to proceed, the required data from all the jobs needs to be sent to the

processor assigned to complete synchronization. Our algorithm allows for all jobs to

complete executing nearly simultaneously. As such, there is no time advantage to

synchronization being assigned to any specific processor or core set. Therefore, the

metric for synchronization should be to limit the amount of data that must be sent

 34

between core sets to permit synchronization. We propose to define which core set is to

synchronize based on the equation:

anationCostSynchroniz  4 (20)

where na is the number of jobs from the fork assigned to that core set. The scheduler can

select any free processor on the core set with the lowest cost to perform the

synchronization.

If a job is on a different core set than the one selected to synchronize, the data,

upon completion of execution, is sent to the synchronization core set to await the join. If

the job is on the same core set, then the processor simply becomes free again to be

assigned another task to execute.

3.3 Processor Speed Determination

The final role of ForPowER’s scheduler is to determine the processor clock

frequency for the processors. As explained in Section 2.1.3, there are six different speeds

for a processor to run at: 400 MHz, 600 MHz, 800 MHz, 1000 MHz, 1200 MHz, and

1400 MHz. The lower speeds consume less power than the faster speeds. Therefore,

when a processor is idle and not in use, the scheduler will set its clock speed to as low as

possible (400 MHz) as this will allow it to consume the least amount of energy.

However, when a processor is in use, it is necessary to be able to determine the

proper processor frequency to save power without affecting the execution time of the

overall program. Therefore, we need to assign the critical job to always run at the

 35

maximum clock frequency as it inevitably will be the section of code that determines the

overall execution time of a given fork.

Now knowing that the critical job will be running at the maximum clock

frequency, we can determine the processor speed of all non-critical jobs. It was shown in

[29] that for a job k, there is a required workload, wk, which is the number of clock cycles

needed to complete it. Similarly, the critical job has the maximum workload, wmax.

Relative to the workload of the critical job, job k’s requisite clock speed, fk (in MHz), can

be determined by:

MHz 200* *61
max
























w

w
f k

k (21)

Eq. (21) is derived from the linear relationship between execution time and workload for

on-chip execution as explained in [29]. The workload ratio is multiplied by six because

there are six possible processor speeds. The ceiling function is used in (21) since it is

necessary to have the execution time of non-critical jobs be less than that of the critical

job; therefore, the ceiling function gives non-critical jobs the lowest possible clock speed

that still allows it to finish before the critical job. The whole sum is multiplied by 200

because that is the step-size between the different processor speeds.

 36

Chapter 4 - Experimental Results

In this chapter, we describe the software we utilized to simulate both ForPowER

and Kumar’s architecture. Moreover, we present the benchmark selected to determine

power usage for both architectures and compare the results. Finally, we discuss the

sensitivities of ForPowER to different usage profiles.

When simulating a heterogeneous System on a Chip, there are two potential

modeling paradigms that can be utilized. The first option to simulate is at the instruction

level, which involves simulating the processing elements implementing every single

instruction within a given application. However, these simulators will be inadequate for

capturing the design tradeoffs in heterogeneous SoCs. This arises from the prohibitively

large simulation times for instruction set simulation (ISS) as well as the time required to

develop the ISS-level models.

To overcome the costs involved with simulating at the instruction level, it is

possible to model heterogeneous SoCs at a higher level of abstraction. These higher

layer simulators allow designers to manipulate threads, tasks, processors, and scheduling

and communication strategies as opposed to instructions, functional units, and registers.

These simulators have been shown to generate comparable results to those done at the

instruction level in [23].

4.1 Software Implementation

 We used the MESH (Modeling Environment for Software and Hardware)

simulation suite to model both Kumar’s architecture and ForPowER [24]. MESH is a

 37

Figure 4.1 - MESH Simulator tool flow. The application and architecture

specification files are compiled with the MESH libraries to get an executable

simulation.

compiled simulator written in the standard C programming language. This allows for

greater readability of simulation as the conventions and syntax of C are widely used and

standard. Moreover, since most modern UNIX based machines have C compilers built

into the operating system, the code is portable to UNIX-based machines.

 Fig. 4.1 is the tool flow chart for the MESH suite. First, the designer specifies the

program to be simulated as well as the architecture it will be run on within .C files. This

is done through a set of application program interface (API) functions. These API’s form

the building blocks of the programs (e.g. forks, joins, threads, tasks) and the architectures

(e.g. processors, schedulers, buses, etc.). The API’s are provided by the precompiled

resource and scheduler libraries that are part of the MESH suite. When the application

and architecture .c files are compiled, they are linked with the MESH simulation kernels

and the precompiled libraries forming a single executable file. [24]

 38

4.2 Hydro2D Benchmark

 There are numerous fork-join benchmarks that could be used to compare the

energy consumed in the hardware of ForPowER to the energy consumed by Kumar’s

architecture. These include the fork-join benchmark that is part of parallel Java Grande

Suite [37] and the NAS APPBT benchmark [7]. The benchmark we selected to use to

test ForPowER was the Hydro2D benchmark. It was included as part of the Standard

Performance Evaluation Corporation 1995 (SPEC95) benchmark package [7]. It solves

the hydronamical Navier-Stokes equations to compute galactic jets. The benchmark is

390 kilobytes (kB) large [25] and requires a data set that is 8.71 megabytes (MB) [26].

Fig. 4.2 is the flow control graph of the Hydro2D benchmark. Each numbered or

Figure 4.2 - Hydro2D Benchmark flow of execution where each circle

represents a task with the number in the circle representing its task number.

Tasks 4, 5, and 6 spawn another level of parallelism implementing the

functions stagf, trans1, and trans2, respectively.

 39

Table 4.1 – Hydro2D average cache miss rates per 1000 memory references

 Instructions Misses Data Misses

16kB Cache 0.01 70

64 kB Cache 0.001 70

lettered circle represents a task that needs to be scheduled to a processor. Each of the

tasks requires approximately the same execution time. Moreover, Hydro2D contains two

levels of parallelism. After task 1 completes, it forks to three separate tasks each of

which can be scheduled on their own processor. Task 4 then spawns (i.e., forks resulting

in) the second level of parallelism where the subroutine, stagf, is run. At the completion

of all the tasks, a join occurs, which must synchronize all jobs in that fork before

execution can continue. Similarly, tasks 5 and 6 spawn additional parallelism for

subroutines trans1 and trans2 respectively [7]. Both trans1 and trans2 have a single

level of parallelism.

We assumed 90% instruction sharing and 11% data sharing between parallel jobs,

as established in programs of this type in [11].

 Hydro2D has 524 million instruction memory references and 195 million data

memory references. Table 4.1 summarizes the cache miss rates for instruction and data

references for Hydro2D. The two cache sizes (16kB and 64kB) are the cache sizes for

Kumar’s architecture ForPowER architecture respectively [12].

4.3 Experimental Results

 40

 We simulated the benchmark described in section 4.2 on both ForPowER and

Kumar’s architecture. We used a 16kB L1 cache and 512kB L2 cache for each processor

for Kumar architecture and a 64kB shared L1 cache and 2MB shared L2 cache for

ForPowER (resulting in the same amount of total memory); we used 70 nm technology

for the transistor sizes in the caches. Since the same amount of total memory exists, the

only additional hardware required for the caches in ForPowER are the four crossbars.

The dynamic power consumed for a single memory access [27] as well as the

static power consumed per 32 byte block cache [11] in the respective caches is shown in

table 4.2.

 The power consumption in three components, namely, the processors, the caches,

and the network, will be compared for both architectures. Table 4.3 summarizes the

power dissipation in for both ForPowER and Kumar’s architecture. All values of energy

consumption are in millijoules.

 The largest percentage and absolute savings in power occurred in the processors

with over 70% decrease in power consumed by implementing dynamic voltage and

Table 4.2 – Kumar’s and ForPowER cache dynamic and static power profiles

Kumar Dynamic Power Static Power

16 kB L1 Cache 113 pJ 0.4 pJ

512 kB L2 Cache 501 pJ 0.4 pJ

ForPowER Dynamic Power Static Power

64 kB L1 Cache 121 pJ 0.4 pJ

2 MB L2 Cache 950 pJ 0.4 pJ

 41

Table 4.3 – Energy consumption (in mJ) of the Hydro2D benchmark on

Kumar’s architecture and ForPowER

 Kumar ForPowER

Processors 264207 72511

L1 Dynamic 82.9 93.8

L2 Dynamic 6.8 13.0

Cache Static 34820 31256

Network 0.3 0.2

Total 299117 103874

frequency scaling.

 In terms of cache power, ForPowER consumes slightly more dynamic power

because of the need to power the crossbar in the L1 stage as well as the additional power

per access for the L2 cache due to ForPowER’s L2 cache’s larger size. However, this

small difference is made up by the substantial static power savings from the instruction

and data sharing among the different jobs.

 The power dissipated in the network is very small (less than .01% of all power

consumed). ForPowER was still successful at saving power over Kumar in the network.

4.4 Sensitivity Analysis

When the amount of parallelism and sharing of instructions and data across the

tasks is very high, the level of saving is greatest. In this section, we compare how

ForPowER faired against Kumar’s architecture under different workload conditions.

 42

First, we utilized the same flow control graph and the size of data and instructions

sets needed by the individual tasks from the Hydro2D benchmark (see Fig. 4.2) to test

how ForPowER compared to Kumar’s under different levels of sharing of instructions

and data. To achieve this, we varied the level the sharing of instructions and data across

the jobs in a fork. For simplicity, we assumed that the level of sharing of instructions and

data was identical across all the jobs. This was simulated using the MESH suite

described in section 4.2.

Fig. 4.3 shows the power consumed by the caches with different levels of sharing

of instructions and data. With very low levels of sharing (less than approximately 1%),

Kumar’s architecture dissipated less energy than ForPowER since each L1 access in

ForPowER has to also power the crossbar, while those in Kumar’s do not, and each

access to the L2 cache in ForPowER consumes more energy as shown in table 4.2. In

section 4.3, the savings in static power from the elimination of the need to power

redundant data made up for the difference in dynamic power. However, low levels of

sharing do not provide sufficient opportunity for ForPowER to overcome this additional

dynamic power, resulting in Kumar’s architecture fairing slightly better. It should also be

noted for even 100% sharing, there is still substantial power consumed by the cache as

still one copy of each byte of data and instruction must be powered. This is the minimal

amount of power that can be consumed for any benchmark with the same flow control

and data as the Hydro2D.

In addition, there is a linear relationship between the savings in energy consumed

by the cache versus different levels of sharing. This arises from the near uniform sharing

of instructions and data in the tasks in the Hydro2D benchmark.

 43

Energy Consumed by the Caches with Varying

Instruction and Data Sharing Levels

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

Percent Instruction and Data Sharing

E
n

e
rg

y
 (

m
J
)

Kumar

ForPow ER

Figure 4.3 - Energy consumed (in mJ) by the caches in both architectures

under varying levels of sharing of instructions and data

Energy Consumed by the Processors Under Varying

Loads Relative to the Critical Job

0

50000

100000

150000

200000

250000

300000

350000

0 20 40 60 80 100

Percentage of the Critical Job's Execution Time

E
n

e
rg

y
 (

m
J
)

Kumar

ForPow ER

Figure 4.4 - Energy consumed (in mJ) by the processors in both architectures

with varying processing loads relative to the critical job

 44

Next, we tested ForPowER to see how it saved power relative to Kumar’s

architecture under various processing loads. To do this, we assigned eight of the

processors identical jobs that would form the critical job; these jobs each required two

seconds of execution time. This was kept static and used across the entire simulation.

With the remaining eight cores, all were assigned equivalent jobs, whose execution time

would be some percentage of the execution time of the critical job. The percentage of the

critical job was varied to see the total energy consumed. This was all simulated using

the MESH suite and results are in Fig. 4.4.

 When the execution times of jobs were 85% or more of the critical job,

ForPowER consumed the same amount of energy as Kumar’s architecture. Over all other

execution times relative to the critical job, ForPowER performed better, with a maximum

savings of 38%. At no possible values did ForPowER perform worse than Kumar’s.

Furthermore, at approximately 85% of the critical job, the biggest change in

energy consumed occurred. This results from the change in processing speed from 1400

MHz to 1200 MHz for those executing non-critical jobs. A similar spike in the energy

consumed occurs each time the job that is not the critical job can be completed in

adequate time at the next lowest speed (for a list of the available processor speeds, see

section 2.1.3).

 45

Chapter 5 - Conclusions

 This thesis proposed a power efficient architecture to exploit fork join parallelism

using system on a chip, using total energy consumption as the metric. In Chapter two, we

discussed ForPowER’s design, describing its energy-efficient processors, caches and

network. Chapter three described ForPowER’s intelligent scheduling and

synchronization algorithm.

 Chapter four compared ForPowER’s results with the results from Kumar’s

architecture, as presented in [3] to determine whose architecture consumed less energy.

It was shown that in all categories tested (processor, cache, and network power)

ForPowER outperformed Kumar’s on the Hydro2D benchmark, leading to a total energy

savings of over 65%. Moreover, we explained that for all but the lowest levels of data

and instruction sharing (less than 1%), ForPowER’s caches consumed less energy than

Kumar’s architecture. Furthermore, regardless of how long the execution time of each

job is compared to the critical job, ForPowER always consumes less or the same amount

of energy as Kumar.

 The hardware required for the energy savings is only slightly more than that

utilized in Kumar’s architecture. The added hardware included the four crossbars for the

shared caches as well as the hardware required for scaling the processors’ clock

frequencies and supply voltages. Moreover, our architecture was also able to utilize one

less processor than Kumar’s architecture by eliminating the need for a dedicated

synchronization processor.

 With the successful proof of concept, the next logical step is to synthesize this

architecture to a series of field programmable gate array (FPGA) boards. This hardware

 46

implementation scheme would allow for energy consumption results on actual hardware,

while not necessitating special hardware construction.

 47

Bibliography

[1] D. Culler and J. P. Singh, Parallel Computer Architecture: A Hardware/Software

Approach, 3
rd

 ed., San Francisco, CA: Morgan Kauffman, 2003.

[2] A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips, San Francisco, CA:

Morgan Kauffman, 2005

[3] A. Kumar and R. Shorey, "Performance Analysis and Scheduling of Stochastic

Fork-Join Jobs in a Multicomputer System," IEEE Transactions on Parallel and

Distributed Systems, vol. 4, no. 10, pp. 1147-1164, 1993.

[4] J. Lui, R. Muntz, and D. Towsley , "Computing Performance Bounds of Fork-Join

Parallel Programs Under a Multiprocessing Environment," IEEE Transactions

on Parallel and Distributed Systems, vol. 9, no. 3, pp. 295-311, March 1998.

[5] M. Gergeleit, E. Nett, and J. Fitzner, "Online Prediction of Execution Times – A

Basis for Adaptive Scheduling," Proceedings of the Fourth International

Workshop on Object-Oriented Real-Time Dependable Systems, pp. 186-194,

Jan. 1999.

[6] M.J. Quinn, Programming in C with MPI and OpenMP, 1
st
 ed., New York:

McGraw Hill, 2004.

[7] X. Martorell et. al., "Thread Fork/Join Techniques for Multi-level Parallelism

Exploitation in NUMA Multiprocessors," Proceedings of the 13th International

Conference on Super Computing, pp. 294-301, 1999.

[8] F. Hillier and G. Lieberman, Introduction to Operations Research, 8
th

 ed., New

York: McGraw Hill, 2005.

[9] T.Y. Morad, U.C. Weiser, and A. Kolodny, "Why Not Data Trace Cache,"

Workshop on Duplicating, Deconstructing, and Debunking in Conjunction with

the 32nd International Symposium on Computer Architecture, June 2005.

[10] M.F. Mudawar, "Scalable Cache Memory Design for Large-Scale SMT

Architecture," Proceedings of the 3rd Workshop on Memory Performance

Issues in Conjunction with the 31st Symposium on Computer Architecture, pp.

65-71, 2004.

[11] L. Lin et. al., "CCC: Crossbar Connected Caches for Reducing Energy

Consumption of On-Chip Multiprocessors," Proceedings of the Euromicro

Symposium on Digital System Design, pp. 41-48, 2003.

 48

[12] M.J. Charney and T.R. Puzak, "Prefetching and Memory System Behavior of the

SPEC95 Benchmark Suite," IBM Journal of Research and Development, vol.

41, no. 3, pp. 265-286, May 1997.

[13] YH Lu, L. Benini, and G. De Micheli, "Dynamic Frequency Scaling with Buffer

Insertion for Mixed Workloads," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 21, no. 11, pp. 1284-1305,

2002.

[14] F.R. Boyer et. al. “A Variable Period Clock Synthesis (VPCS) Architecture for

Next-Generation Power-Aware SoC Applications.” In IEEE Proceedings of the

2
nd

 IEEE Northeast Workshop on Circuits and Systems, pages 145-148, 2004.

[15] L. Yuan and G. Qu, "Analysis of Energy Reduction of Dynamic Voltage Scaling-

Enabled Systems," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 24, no. 12, pp. 1827-1837, 2005.

[16] “Intel PXA26x Processor Family Design Guide – Revision 1.0.” October 2002.

The Intel Corporation.

<http://www.intel.com/design/pca/applicationsprocessors/

 manuals/278639.htm>.

[17] “Intel Pentium M. Processor on 90nm Process with 2-MB L2 Cache Datasheet.”

January 2006. The Intel Corporation.

<http://download.intel.com/design/mobile/

 datashts/30218908.pdf>

[18] T. Mudge, "Power: A First-Class Architectural Design Constraint," Computer,

vol. 34, no. 4, pp. 52-58, April 2001.

[19] J.M. Rabaey, A. Chandrakasa, and B. Nikolic, Digital Integrated Circuits: A

Design Perspective, 2
nd

 ed., Englewood Cliffs, NJ: Prentice Hall, 2002.

[20] V. Zyuban et. al., "Integrated Analysis of Power and Performance of Pipelined

Microprocessors," IEEE Transactions on Computers, vol. 53, no. 8, pp. 1004-

1016, August 2004.

[21] L. Benini and G. De Micheli, "Networks on Chips: A New SoC Paradigm,"

Computer, vol. 35, no. 1, pp. 70-78, 2002.

[22] H. Wang, LS Peh, and S. Malik, "A Technology-aware and Energy Oriented

Topology Exploration for On-Chip Networks," Proceedings of the Design,

Automation, and Test in Europe Conference and Exhibition, vol. 2, pp. 1238-

1243, 2005.

 49

[23] B. Meyer et. al., "Power-Performance Simulation and Design Strategies for

Single-Chip Heterogeneous Multiprocessors," IEEE Transactions on

Computers, vol. 54, no. 6, pp. 684-697, June 2005.

[24] The MESH Group, MESH User's Manual, 0.04.09.27 ed., Pittsburgh, PA:

Carnegie Mellon University, 2004.

[25] “Description of the Hydro2D Benchmark.” SPEC92 Floating Point Benchmark

Package. The Standard Performance Evaluation Company. 8 March 2006

<http://www.spec.org/cpu92/DESCR.090>.

[26] D. Burger, J. R. Goodman, and A. Kagi, "Memory Bandwidth Limitations of

Future Microprocessors," Proceedings of the 23rd International Symposium on

Computer Architecture, pp. 78-90, May 1996.

[27] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An Integrated Cache Timing, Power

and Area Model”, Technical report, Western Research Lab (WRL), Feb. 2001.

[28] F. Ho, A.S. Hou, and D.M. Bloom, " High-Speed Integrated Circuit Probing

Using a Scanning Force Microscope Sampler," IEE Electronic Letters, vol. 30,

no. 7, pp. 560-562, March 1994.

[29] K. Choi, R. Soma, and M. Pedram, “Dynamic Voltage and Frequency Scaling

based on Workload Decomposition,” Proceedings of the 2004 International

Symposium on Low Power Electronics and Design, pp. 174-179, 2004.

[30] E. Varki, "Response Time Analysis of Parallel Computer and Storage Systems,"

IEEE Transactions of Parallel and Distributed Systems, vol. 12, no. 11, pp.

1146-1161, Nov. 2001.

[31] H. Wang, LS Peh, and S. Malik, "Power-driven Design of Router

Microarchitecture in On-Chip Networks," Proceedings of the 36th International

Symposium on Microarchitecture, pp. 105-116, 2003.

[32] D. Patterson and J. Hennessey, Computer Organization and Design - The

Hardware/Software Interface, 3rd ed., San Francisco, CA: Morgan Kaufmann,

2005.

[33] J. Kurose and K. Ross, Computer Networking - A Top-Down Approach Featuring

the Internet, 3rd ed., Boston: Addison Wesley, 2005.

[34] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts, 7th ed.,

Danvers, MA: John Wiley & Sons Inc., 2005.

[35] L.R. Foulds, Combinatorial Optimization for Undergraduates, New York:

Springer-Verlag, 1984.

 50

[36] S. Narendra et. al., "Full-Chip Subthreshold Leakage Power Prediction and

Reduction Techniques for Sub-0.18-/spl mu/m CMOS," IEEE Journal of Solid-

State Circuits, vol. 39, no. 3, pp. 501-510, March 2004.

[37] L.A. Smith, J.M. Bull, and J. Obdrizalek, "A Parallel Java Grande Benchmark

Suite," ACM/IEEE 2001 Conference on Supercomputing, pp. 1-10, Nov. 2001.

[38] R. Ghattas and A.G. Dean, "Energy Management for Commodity Short-Bit-Width

Microcontrollers," Proceedings of the 2005 International Conference on

Compilers, Architectures and Synthesis for Embedded Systems, pp. 32-42,

2005.

[39] W.R. Daasch, C.H. Lim, and G. Cai, "Design of VLSI CMOS Circuits Under

Thermal Constraint," IEEE Transactions on Circuits and Systems II: Analog

and Digital Signal Processing, vol. 49, no. 8, pp. 589-593, Aug. 2002.

 51

Appendix A – Nomenclature

α : Reward in the assignment algorithm for scheduling a job to continue executing on the

same core set

β : Reward in the assignment algorithm for scheduling a job to continue executing on the

same processor

A : Average number of CMOS gates that switch states per cycle

ALU : Arithmetic Logic Unit

API : Application Program Interface

ASIC : Application specific integrated circuit

BTE : Block transfer engine

C : CMOS gate’s capacitive load

CPU : Central processing unit

de : Energy consumed by the cache in one memory access

DEx : Total dynamic energy consumed by cache level x

DSP : Digital Signal Processor

ex : Energy consumed by the crossbar in one memory access

f : Processor clock frequency

fmax : Processors maximum clock frequency

ForPowER : The Fork-join Power Efficient aRchitecture

GHz : Gigahertz

Ishort : Short circuit current

ISS : Instruction set simulation

Ileak : Leakage current of the CMOS logic

 52

kB : Kilobyte

L1 : Level one of the cache

L2 : Level two of the cache

lea : Leakage energy of a cache block per cycle

LEx : Total leakage energy consumed by cache level x

MB : Megabyte

MESH : Modeling Environment for Software and Hardware

MHz : Megahertz

noj : Number of processors open on processor j’s core set

Nhit : Number of cache hits

Nmiss : Number of cache misses

NOOP : No operation

rk : Number of tasks required to complete job k

R : Number of jobs in a fork

S : Synchronization processor in Kumar’s architecture

SoC : System on a chip

Texpi : Expected execution time of task i

u(x) : Heaviside’s unit step function, if x is greater than 0, then u(x) = 1, otherwise

u(x) = 0

V : Supply voltage of the processor

Vthreshold : Threshold voltage of the transistor which determines if it is in the high or low

state

