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Abstract 

ForPowER: A Novel Architecture for Energy Efficient Implementation 

of Fork-Join Parallelism Using System on a Chip 

Zayd Hammoudeh 

Nagarajan Kandasamy, Ph.D. 

Moshe Kam, Ph.D. 

 

 We describe ForPowER, a power-efficient architecture for handling fork-join 

parallelism using system on a chip.  Our design consists of 16 processor cores, capable of 

dynamically scaling their clock frequencies and supply voltages under different 

workloads.  The processors are divided into four sets of four, with each set sharing a 

multiported two-level cache.  This arrangement reduces the energy wasted on powering 

redundant data.  ForPowER also uses a central scheduler, which assigns tasks to the 

processors, taking advantage of the shared memory and of the processors ability to scale 

their clock frequencies under varied workload. 

 We also describe power models for all components of the SoC design, namely the 

caches, processors, and the network. 

 We show that in simulation, ForPowER outperforms the most widely used fork-

join architecture on the SPEC-95 Hydro2D benchmark, consuming over 65% less energy. 
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Chapter 1 - Introduction 

Since the early 1990’s, there has been explosive growth in the performance and 

capabilities of computer systems, with an increase in speed of over 150 times [28].  One 

of the catalysts for this has been the exploitation of parallelism in software [1].  

Parallelism is the level at which multiple instructions in a section of code can be issued 

and performed concurrently.  In traditional serial computing, each task must be executed 

sequentially on a single processing element.  In contrast, a parallel computer is “a 

collection of processing elements that communicate and cooperate to solve large 

problems fast” by distributing those portions of a program that can be parallelized to be 

executed simultaneously on different processors. Extracting the benefits of parallelism 

involves incorporating additional hardware into computer systems. As opposed to 

achieving improved performance via adding supplementary functional units (e.g. 

additional pipelines, ALUs, floating point units) to a single processor, the most common 

approach to parallel computing is to link multiple processing units together using a 

communication architecture. This prevents the processors from becoming unnecessarily 

complex by reducing the total number of functional units on a single processor by using 

multiple, connected processors.     

This thesis will focus on one specific type of software parallelism known as fork-

join parallelism.  Fig. 1.1 shows the execution-flow of a program that fits fork-join 

parallelism, or can be made to fit that paradigm.  Following a section of a program where 

instructions are performed sequentially, the subsequent execution forks into R 

independent jobs.  Each job is comprised of a set of tasks that must be executed 

sequentially.  For a given job k, there are rk tasks.  While each job’s tasks need to be  
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Figure 1.1 - Fork-join program model with R jobs.  Each job k, comprises a 

set of tasks (Tk,l) that are executed sequentially 

 

 

 

Executed sequentially, the R jobs can be scheduled to different processing units to 

execute in parallel.  Task l within job k has an expected execution time.  As such, the 

total execution time of job k is the sum of the execution times of all rk tasks.  When all R 

jobs have completed execution, they synchronize, which entails waiting for the remaining 

jobs to complete and performing any necessary merging of their outputs.  Once 

synchronization completes, sequential execution can continue. 

Previous attempts to design parallel computers aimed at fork-join programs have 

expanded on work performed by Kumar in [3].  It has been used as the basis for other 

work in the area, including [4] and [30]. 

 Kumar’s architecture, shown in Fig. 1.2, consists of a central scheduler that 

functions as a simple Round Robin scheduler [33].  Upon arrival of a job at the scheduler,  



 3 

 

Figure 1.2 - Model of Kumar’s architecture for handling fork-join 

parallelism, which links a central scheduler to N processors, with two level 

caches.  These then are connected to a synchronization processor, S. 

 

 

 

the job is sent over a point-to-point network [33] to one of N homogeneous (identical) 

processors in the system.  Each processor has its own dedicated, two-level cache that 

stores the data sent by the scheduler and any variables created during execution.    Upon 

completion of all the jobs in a fork, the processors send their data to the synchronization 

processor S, which synchronizes all of the jobs.   

 Despite its use, Kumar’s architecture suffers from serious limitations.  The most 

notable among them is that the architecture fails to take advantage of the fact that not all 

jobs in a given fork have the same execution time. In a fork, the set of jobs that has the 

largest execution time constitute the critical job. The critical job provides a lower bound 

for the execution time of the entire fork; this arises from the fact that before 

synchronization can occur, all other jobs must wait for the critical job to complete.  By 

reducing the execution time of the critical job, the execution time for the entire fork is 

reduced.    

Since those jobs that are not the critical job must wait for the critical job to 

complete before synchronization can occur, a time slack exists in such jobs.  This allows 
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for the overall execution time of those jobs that are not critical to be delayed until their 

execution time equals the execution time of the critical job, without impacting overall 

system performance.   When the jobs are assigned to different processors to be executed, 

the critical job should always be run at the maximum operating frequency, because it is 

the one requiring the most time to complete.  An effective way to slow down the 

execution of non-critical jobs is to assign them to processors with clock speeds less than 

the processor executing the critical job (this technology was not available to Kumar when 

he developed his architecture).  Work in dynamic prediction of expected execution time 

for a given section of a program, which allows for the adaptive scheduling of jobs, has 

been done by Gergeleit [5].  

Fig. 1.3 is a demonstrative example of a fork-join with the format of this figure  

 

 

 

Figure 1.3 - Sample fork and join. The execution time of each task is 

indicated below the task name. 
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similar to that found in Fig. 1.1; the circles contain the name of each task and its 

corresponding execution time.   Since the total execution time of a job is the sum of the 

execution times of all the tasks that constitute it, job2 (i.e., Task2,1 and Task2,2) is the 

critical job with a total time of 10 compared to 5 for the job1 (Task1,1 and Task1,2) and 1 

for the job3 (task).  Those tasks not part of the critical job (e.g. Task1,1, Task1,2, and 

Task3,1) can be scheduled to slower processors without affecting the net time to complete 

the fork.  Since the sum of the execution times of Task1,1 and Task1,2 is half that of the 

critical job, the processor that is executing those tasks can run at half the speed as the one 

executing the critical job (i.e., Task2,1 and Task2,2), as shown in [29] that execution time 

scales linearly with processor speed for tasks that are executed on the CPU.  Similarly, 

the processor executing Task3,1 can run at one-tenth the speed of the critical job.  This 

allows for near simultaneous synchronization, which has the distinct advantage that by 

slowing the processor speed of non-critical jobs, significantly less power will be 

consumed than by running at faster speed and idling the processor [18]. 

 Moreover, each processor executes its required workload independent of the other 

processors.  However, Martorell in [7] suggested grouping different processors into 

different sets of processors.  Each set of processors consisted of a master processor and 

possibly several slave processors; the master and slaves processors had different roles 

with the master processor starting executing and then spawning, if necessary, any 

parallelism encountered to the slave processors.  Through this grouping arrangement, 

Martorell notes that the processors in a group are able to cooperate with each other to 

complete execution of encountered parallelism more efficiently.  Similarly, Martorell 
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notes that by grouping processors into smaller groups, it then makes it worthwhile to 

attempt to exploit multiple levels of parallelism that can be present in fork-join programs. 

 Another limitation of Kumar’s architecture is that each of the N processors is 

assigned a dedicated cache.  The authors of [6] note that the jobs in a fork all share a 

portion of data and instructions.  As such, it is inefficient to give each individual 

processor a dedicated cache as it takes additional network resources to resend the shared 

data to each of the processors, as well as expend energy preserving multiple copies of this 

shared data in these caches. 

 In addition to the power saved by using shared memory, others have studied the 

performance and implementation benefits of shared memory for fork-join programs.  

Quinn in [6] noted that by allowing for shared memories between the different jobs in the 

fork, the synchronization processor can use the shared program variables that are stored 

in these shared memories, which drastically simplifies synchronization.  Similarly, if one 

job in a fork needs to send it a message to another job, it can do so by writing to a shared 

memory location.  In contrast, Kumar’s architecture used a message passing strategy, 

which is a form of communication where messages are sent through the network to 

communicate with the different jobs.  As such, when synchronization occurs, the 

different processors must send the data through the network and create new variables at 

the synchronization processor.  The sending of the requisite data and creating the new 

variables is additional overhead added by this communication strategy. 

Furthermore, the architecture proposed by Kumar in [3] did not take advantage of 

a new and increasingly popular method for linking multiple processing elements known 

as System on a Chip (SoC).  An SoC design is an application specific integrated circuit 
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(ASIC) which consists of different (i.e. heterogeneous) types of components on a single 

chip that communicate with each other and work together.  Potential SoC nodes include: 

memories, I/O devices, digital signal processors (DSPs), and central processing units 

(CPUs).  These components are linked through a system of interconnects between the 

different components.  Types of interconnects include: a shared medium (e.g. bus) and a 

point-to-point network.  Through this collection of diverse nodes, an SoC serves as a 

complete computing system that can execute software or programs stored in on-chip 

memories or inputs from the I/O ports.  

Compared to computer systems, such as Kumar’s [3], where the nodes are not all 

connected to each other on a single chip, system on a chip has several distinct advantages 

for a small number of nodes (typically under one hundred).  SoCs are designed with the 

capability to provide error-free communication between nodes [21]; this is possible 

because of the fact that all nodes are connected on the same chip with reliable 

communication channels.  This ability leads the designers of SoCs to assume a fully 

deterministic interconnect architecture for communication (i.e., all messages are 

guaranteed to be delivered) as well as value resolution (the intended message will be 

correctly extracted from the received data), significantly simplifying the architecture for a 

low number of nodes. 

Fig. 1.4 is a schematic of a multiprocessor SoC.  The model has heterogeneous 

(i.e. nonuniform) placement of memory units as well as heterogeneous processing units.  

Since the architecture of SoCs is tuned and specialized to function optimally for a 

specific application or restricted set of related applications, selection of components and 

the design of the chips are nonstandard. 
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Figure 1.4 - Schematic of a modern SoC with DSP processors (DSP), 

microprocessors (µP), input-output ports (IOP), data caches (D$), and 

instruction caches (I$) connected with an interconnection fabric. 

 

 

 

The overall performance of an SoC is based on three criteria: latency of 

execution, area efficiency, which is the size of the chip required for all the hardware, and 

energy efficiency, which is the energy consumed by the chip during execution.  In 

embedded systems and portable devices, energy efficiency in SoCs is becoming a key 

design constraint.   Ideally, it is important to limit the overall power consumption of the 

system without affecting the overall execution time of programs [2]. 

When designing a low-power computer architecture for a system on a chip, it is 

insufficient to solely focus on minimizing the energy dissipated by the processing units.  

The power dissipated by the interconnection networks linking the nodes together can be 

substantial; in the MIT RAW Network on a Chip Architecture, 36% of overall chip 

power was dissipated in the interconnects [31].   
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This thesis develops ForPowER, the Fork-Join Power Efficient aRchitecture.  It is 

an energy efficient SoC design to exploit fork-join parallelism of the type shown in Fig. 

1.1.  By simulating the execution of the SPEC-95 Hydro2D benchmark that solves the 

hydronamical Navier-Stokes equations, we compare the energy consumed by ForPowER 

with Kumar’s architecture shown in Fig. 1.2. The proposed ForPowER architecture is 

shown to consume 65% less energy than Kumar’s design.  We accomplish this by 

allowing ForPowER to dynamically slow down processor speeds of non-critical jobs 

allowing them to save significant portions of the energy.  The power savings are further 

improved by permitting the sharing of data between the processors significantly, which 

limits the power wasted on redundant data. 

The rest of this thesis is as follows.  Chapter 2 describes ForPowER, our 

architecture for efficiently handling fork-join parallelism.  Chapter 3 details ForPowER’s 

scheduler and assignment algorithm for distributing jobs in the SoC.  Chapter 4 presents 

our experimental results and ForPowER’s load sensitivities.  Chapter 5 discusses our 

conclusions and suggestions for future work.  
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 Chapter 2 - Power Efficient Computer Architecture 

The chapter will discuss ForPowER, our energy-efficient SoC for handling fork-

join parallelism.  Specifically, we will describe the caches, processors, and network 

topology that are being used.  We also explain how power consumption is modeled in all 

three parts of the SoC.  

Since fork-join programs only require a small number of processing elements (as 

was explained in [7] that the number of jobs in fork join programs does not usually 

exceed 64), the main constraint of scalability in SoCs is not a factor.  The architecture 

discussed in this thesis selected 16 processors, as this is the standard size used in other 

studies such as [7].  All derived formulas and requisite hardware was designed based on 

16 processors but is easily expandable to 32 or 64 nodes.   

Fig. 2.1 is the proposed layout of ForPowER.   ForPowER consists of multiple 

core sets (which are made up of 4 processors that share a single cache), an 

interconnection network, and a scheduler.  These components will be designed to reduce 

the energy consumed.   

We propose the use of four identical core sets.  Each core set consists of four 

processors sharing a unified (i.e., it contains both instructions and data) multiported, two-

level, banked cache [32].   The cache can be accessed simultaneously by all the 

processors.  Moreover, all processors can be run at different clock frequencies (and in 

turn different supply voltages from the power source to the processor) to limit the power 

dissipated by the system.  

The interconnection fabric is a router based, point-to-point network.  All four core 

sets and the scheduler have a dedicated network interface.  Each of the routers at the  
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Figure 2.1 -  The SoC layout of ForPowER.  It consists of 16 processors (P), 4 

multi-ported caches, a central scheduler, and a switch fabric.  Each set of 4 

processors and shared cache forms a core set. 

 

 

 

interfaces is linked to all other routers, making the network fully connected at the router 

level.  

The scheduler is designed as the central unit that assigns each task to a processor 

in the system, schedules synchronization, and sets the processor speeds.  The scheduler 

uses an energy-efficient cost-based algorithm for task assignment that is detailed in 

Chapter 3. 
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2.1  Core Set Structure 

 

 The core set consists of two distinct components, the multiported cache and the 

four processors.  Both are designed to limit power consumption.  

 

2.1.1  Cache Architecture 

 

 The assumption throughout the literature is that all jobs created by a fork rely on 

some core of data that all the jobs use, and that data is left unchanged.  Since each task 

operates independently only on the data it needs, no cache coherence protocol [1] to 

maintain integrity of the shared data is required, as data shared between jobs are never 

modified.  In addition, rather than giving each processor a private cache, which would 

each be sent duplicate copies of the data, it is more energy efficient for multiple 

processors to be linked to a shared cache that contains only one copy of this shared data 

set.  By using a shared cache, energy is saved by (1) eliminating the need to power 

identical blocks across multiple caches, (2) reducing network traffic by decreasing the 

number of copies of the data that need to be transmitted, and (3) limiting or eliminating 

the need to send all data to a single processor (e.g. the S processor in Kumar’s 

architecture) when synchronizing.  Note that if all the jobs are run off the same shared 

cache, then all the data is already present for any single processor to operate.   

 There are multiple methods to implement a shared cache.  The simplest method is 

to share a single-ported cache amongst multiple processors.  Although implementing a 
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shared single-ported cache requires less board area and is less complex to implement than 

a multiported cache, it causes significant degradation of performance and increases the 

execution time of parallel programs.  By increasing the number of ports on a data cache 

to five (one for each of the four processors and the network interface), it has been shown 

in [9] that a 24.7% increase in performance can be obtained compared to using a single 

port.  Therefore, a multiported cache was selected as it allows all processors and the 

network to access the cache simultaneously.   

 Multiported caches are of three distinct types: ideal multiporting, time-division 

multiplexing, and multiple independently addressable banks [10].  Ideal multiplexing 

allows each cache block to be simultaneously accessed by all cache ports.  This structure, 

however, is impractical and never applied in industry because of the costs in area, power 

consumption, and access time [10]. 

 Time division multiplexing type multiported caches utilize time to achieve virtual 

ports in a cache.  Memory is accessed twice in each cache clock cycle (on both the rising 

and falling edges) allowing it to operate at twice the processor speed.  However, this 

scheme is impractical because of its lack of scalability to multiple ports [10].  Its 

impracticality is exacerbated in ForPowER since processor cores are running at different 

speeds, making implementation of the protocol overly complex. 

Given the impracticalities of the other cache organizations, the best solution for 

ForPowER is to use a recently developed technique that was not available to Kumar 

known as multi-banking to achieve multiple ported memories.  Multibanking involves 

dividing the memory into multiple banks, the number of which is defined by the  
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Figure 2.2 -  Multiported cache architecture, with n banks 

 

 

 

application space. Each bank is in essence a single-ported cache capable of handling a 

single access per cycle.  The processors or the network access the individual caches 

through the use of a crossbar, which is a switch that connects the four processors and the 

network to the cache banks, as described in [11].  Fig. 2.2 shows the overall structure of 

the shared caches; it consists of n banks that are linked to the four processors and the 

network through the crossbar. 

As previously noted, when multiple nodes try to access the cache, it must first go 

through the crossbar switch to determine the appropriate bank to connect to at which 

point it can then extract the data from that bank.  As such, cache accesses require two 

clock cycles to complete; the first cycle is to use the crossbar to decode the proper bank 

while the second is to retrieve the data from the bank. If multiple nodes try to access the 

same bank in the same clock cycle, one of the nodes is granted access to the bank, while 
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Figure 2.3 -  Flag bits representing the state of a bank in the multiported 

cache.  S and U represent if the bank is shared or unused respectively.  If the 

bank is processor specific (PS), it can be set to be specific to any of the four 

processors in the core set (e.g., P1, P2, P3, P4). 

 

 

 

the remaining nodes wait till that memory operation completes and then attempt to access 

the bank again.   

To determine how the multiple nodes access the different cache banks, the banks 

can be in one of three states: shared, processor specific, or unused.  How to divide the 

data between the banks and what its state should be when data is loaded is determined at 

compile time.  The state of the caches is changed dynamically by the processor or the 

network and stored in specific memory locations in each bank that are eight bits long.   

Fig. 2.3 shows the bit association to the cache banks’ states.  Bits one through three are 

active-high flags for whether that bank is either shared, processor specific or unused 

respectively. Next, given a bank is processor specific (i.e., used by only one processor), 

bits four through seven are flag bits that signify which of the four processors in the core 

set the bank is associated with.  Bit eight is not used.    

Shared cache banks contain data used by more than one processor in the core set.  

For instance, if all the processors in the core set rely on shared data, it can be stored in a 

shared bank and accessed by all nodes. 
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Processor specific banks are used to create cache locations that can only be 

accessed by one specific CPU.  This eliminates contention on memory operations on data 

that are needed by only one task.   

  Unused banks are those that contain no useful data.  This occurs when no data 

have been stored in a location yet or if the data in that bank are no longer needed. 

 Fig. 2.4 is a simplified state diagram describing how a cache block transitions 

between states with transition abbreviations.  All blocks are initially unused.  Unused 

blocks can transition into the shared or processor specific states depending on if the data 

loaded is shared (DLS) or if the data loaded is processor specific (DLPS).  Once a bank is  

 

 

 

Figure 2.4 -  Cache bank state transition diagram.  Transitions between bank 

states occur when there is: a fork, synchronization (Sync), transfer of data to 

a different core set, processor specific data is loaded (DLPS) into the bank, or 

shared data is loaded into the bank (DLS). 
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in no longer unused, the events that can cause a transition between states include: a fork 

(F), a task which once completed only leads to one child (OC) task that can then execute, 

a synchronization (SYNC), and transfer (T) to a different core set.   

 When a bank is in the shared state, if the sequential execution forks or if a job 

finishes executing and is ready to synchronize, then the data should remain in the shared 

state until the synchronization has completed.   

A bank in the processor specific state should remain in that state if it only has one 

child task (i.e., it is not a fork or synchronization) because it is still only needed by that 

processor.  However, if a synchronization of a job on a specific processor is reached and 

synchronization for that processor will be completed on its core set, as determined by the 

central scheduler shown in Fig. 2.1, the bank associated with that processor should switch 

from the processor specific to the shared state.  On the contrary, if synchronization is to 

occur on another core set, the data should be sent across the network. 

 Once all the data in a cache bank is no longer needed because synchronization has 

completed or the task has been transferred out of the core set, then the cache returns to 

the unused state. 

 Both the L1 and L2 cache are unified (i.e., contain both instructions and data). 

Such a configuration has been shown in [12] to perform as well or better on fork-join 

programs than dedicated instruction and data caches.   

The L1 cache is 64 kB large, divided into four equally sized banks (16 kB each).  

The L2 cache is unbanked and 2 MB large.  The L2 cache need not be banked as it is rare 

that there will ever be more than two L1 misses simultaneously, eliminating the need for 

banking as the L2 cache requires only one port. 
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2.1.2  Cache Power Model 

 

 Power is dissipated within a cache in two distinct ways.  One way involves the 

dynamic energy spent to read or write a value to a cache location.  In addition, static 

energy is spent to preserve the data already in the cache.  For a cache level, x, the energy 

(in Joules) expended is: 

 

xxx LEDEE   (1) 

 

where DEx is the dynamic energy consumed by cache level x and LEx the leakage energy 

consumed by x.  

 The overall dynamic energy of a cache is defined as: 

 

exNNdeNNDE misshitmisshit *)(*)2*(   (2) 

 

where de is the energy consumed for one memory access, ex the energy used in the 

crossbar in a multiported cache access (in a standard private cache, ex = 0), Nhit the 

number of cache hits (success attempts to access the cache), and Nmiss is the number of 

cache misses (unsuccessful attempts to access the cache).  Note that Nmiss is multiplied by 

two in (2) because when a miss occurs, the memory is accessed twice, first when you 

check to see if the data is present in the cache resulting in a miss and also again to get the 

data value after it has fetched and placed in the cache. 

 The leakage power of a cache is:  
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leaNALE *  (3) 

 

where NA is the number of cache blocks that are in use and not turned off while lea is the 

leakage energy of a cache block. 

 

2.1.3  Processor Architecture 

 

 The processors in the core set are homogeneous (i.e. structurally identical) 

processing units with identical architectures and instruction sets.  The processors consist 

of simple pipelines with six or more stages.  Fig. 2.5 is one such example.  This pipeline 

is similar to the one employed by MIPS processors [32].  The primary difference is that 

memory access are two cycles long.  The crossbar stages used are described in section 

2.2.1.  Two memory access stages are required, the first to get the instruction from 

memory and the second to get any necessary data required by that instruction.  The 

pipeline consists of six stages, the Instruction Crossbar (IX) where the crossbar is 

powered before the instruction is retrieved from memory, Instruction Fetch (IF) when the 

 

 

 

Figure 2.5 –  Example six-stage pipeline for processors in ForPowER based 

on the standard MIPS pipeline.  Stages one through six are Instruction 

Crossbar (IX), Instruction Fetch (IF), Instruction Decode (ID), Data 

Crossbar (DX), Execution (EX), and Writeback (WB), respectively. 
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instruction to be executes is fetched from memory, Instruction Decode (ID) where the 

instruction is decoded and any necessary data retrieved from the registers, Load/Store 

Crossbar (DX) where the crossbar for the data memory is powered, Execution (EX) when 

the instruction is executed, and Writeback (WB) where the data is written into the 

memory or appropriate register. 

 Most current processors are CMOS based [18].  Therefore, most of the power is 

consumed when the CMOS gates switch between logic true and logic false.  This 

switching power is proportional to the clock frequency and the square of the supply 

voltage.  As such, down scaling the frequencies of the processor’s clock or the supply 

voltage can dramatically reduce the power of this CMOS logic (this is known as dynamic 

voltage scaling) [13].  

 An additional benefit of dynamically changing the frequency and voltages of the 

processors is that they will dissipate significantly less power.  Similarly, if an area of the 

chip gets too hot, the clock speed of the processors in the area of the hotspot can be 

throttled to allow for the additional built up heat to be dissipated and then return to 

normal operation [39]. 

This approach to decreasing power consumption can have three specific 

drawbacks.  First, in previous processor designs, dynamically changing the clock 

frequency took large amounts of time in comparison to overall job execution.  However, 

it has been shown in [14] that current modern processors can switch from its current 

clock frequency to a target speed in only one clock cycle.  This allows for negligible 

overhead between switching clock frequencies and supply voltage levels.  Moreover, 

reducing the clock frequency inherently reduces performance, as clock frequency is 
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inversely proportional to the circuit delay [29].  This was considered unrealistic for many 

application spaces.  This does not apply in fork-join parallelism because this reduction in 

performance of non-critical jobs actually has no effect on the overall net performance of 

the system, as long as their execution time is less than that of the critical job.  As noted in 

Chapter 1, only the critical job needs to be run at maximum frequency.  The slack 

available in the non-critical jobs allow those jobs to be run at a slower clock frequency, 

saving significant energy, as high as 90% [15].  Third, dynamically scaling the processor 

voltage and frequency requires additional hardware.  The hardware required to modify 

the clock frequency is simple [38].  Dynamically scaling the processor supply voltage 

necessitates a few distinct hardware components and is more complicated than the 

hardware for scaling the frequency [38].  

 To effectively achieve maximal power savings, the different speeds at which the 

processors can run must be properly selected.  Current processor designs permit 6-11 

different processors speeds.  Moreover, standard practice involves spacing each of these 

speeds equally for better granularity [16].  As such, we used in ForPowER a modified 

version of the Intel Pentium M 1.6 GHz processor, Intel’s low power mobile processor, 

since it provides good performance, while running at significantly less power (only 10 

Watts at maximum frequency) compared to similar CPUs [16].   We selected to allow it 

to throttle to clock speeds of 400 MHz, 600 MHz, 800 MHz, 1000MHz, 1200 MHz, and 

1400 MHz, as this is the mapping of Intel’s 1.6 GHz Pentium M onto to a maximum 

clock frequency of 1.4 GHz [17] . 
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2.1.4  Processor Power Model 

 

 As mentioned in section 2.1.3, modern processors are composed primarily of 

CMOS logic.  Mudge in [18] defines the power consumption in CMOS logic circuits (in 

Watts) as:  

 

DynamicStaticLeakageCMOS PPPP   (4) 

 

This equation consists of three components.  First, the leakage power is the base amount 

of power lost due to leakage current regardless of the CMOS’ gates or processors state 

(executing or idle).  It is defined as:  

 

leakLeakage VIP   (5) 

 

where V is the supply voltage and Ileak is the leakage current in the gates.  Leakage power 

consists of approximately 2% of total power consumed in current generation CMOS logic 

[19]. 

 The second component in CMOS power dissipation is static power, which as a 

result of the short circuit current Ishort that flows between the supply voltage, V, and 

ground for a small time period, τ, when the CMOS gate’s logic switches.  Static power 

consumption is determined by: 

 

fAVIP shortStatic   (6) 
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given that A is the average number of gates that switch per cycle.  Static power currently 

accounts for 8% of total power consumption in processors [19]. 

 The final term is the dynamic power consumption; it accounts for a majority of 

the power dissipation in CMOS, approximately 90% [19].  It is caused by the actual 

charging and discharging of the capacitive load, C, during each gate’s operation.  It is 

defined as: 

 

fACVPDynamic
2  (7) 

 

For a given supply voltage, processors are run at a maximum clock, fmax, so as to achieve 

the highest performance.  fmax is related to the supply voltage, V, by the relationship: 

 

 
V

VV
f Threshold

2

max


  (8) 

 

where Vthreshold is the threshold voltage of the CMOS gates that defines if it is in the high 

or low logic state.  As such the maximum clock frequency is approximately linearly 

proportional to the supply voltage.  It is then possible to simplify the dynamic power 

consumption to: 

 

3
maxfPDynamic   (9) 

 

where α is the combined coefficient from A and C. 
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 When dynamic frequency scaling is performed on a processor, for the most part, it 

is only the dynamic power consumption that is affected.  Therefore, only 90% of the 

overall power of the processor is scaled.  As such, given the relationship in (9), you can 

determine the power utilized for a given f which is less than or equal to fmax. Therefore, 

the dynamic power can be rewritten: 

 

3
maxmax*9. fP   (10) 

 

If the processor undergoes dynamic frequency scaling and is run at a new frequency f ’, 

which is less than or equal to fmax, the new value of the dynamic power, P’, is: 

 

 3'' fP   (11) 

 

where P’ is less than or equal to .9Pmax.  By dividing (11) by (10), we get: 
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This then simplifies to: 
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This means the power for a different clock frequency can be approximated knowing only 

the maximum clock frequency and the power it dissipates at that frequency.  This 

significantly simplifies determining the power over any chosen frequency spectrum. 

 It is also important to note that when the processor power for a given speed has 

been determined, there are two distinct power profiles for the chip, one for when it is 

executing and the other for when it is idle (i.e. executing NOOP’s, which are assembly 

language instructions that do not execute anything).  The executing power is equivalent to 

the power determined by the maximum power and (13).  The idle power consumption is 

simply 25% less than the power consumed at a given processor speed, while the 

processor is executing [20].  

 Moreover, it is necessary to note the fact that the percentages stated for each type 

of processor power applies to current generation processors.  In future processors where 

the size of the logic gets increasingly small (e.g. 90 nm), the leakage power becomes 

more critical and can represent up to 50% of total processor power [36].  This would 

decrease the benefits due to dynamic frequency scaling. 

 

2.2  Network Model 

 

 Within any SoC design, an interconnection fabric must exist that links all nodes 

together so they can communicate effectively.  Within current designs, two design 

paradigms are in use, specifically shared medium architectures and point-to-point 

networks [33].   
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Figure 2.6 -  A shared-medium network, where a bus connects multiple 

processors (P) and multiple memories (M). 

 

 

 

 First, shared medium architectures are the simplest of all interconnection models.  

In this model, all nodes share a single communication medium.  Fig. 2.6 is an example of 

a shared medium network (in this case a bus) connecting multiple processors and 

memory devices.  Since there is only one communication channel, only one node can 

drive the network at anyone time.  This leads to a bottleneck as every other processor 

must stall until the network becomes free.  Moreover, when a message is sent, it must 

reach all nodes along the communication channel before another message can be sent.  

As such, messages take significantly longer to travel through the network, since 

transmission continues even if the desired destination has already received the message.  

Shared medium networks are also extremely inefficient in low power architectures as 

every message must be broadcast to every single node, even if it is not the intended 

receiver, at greater energy cost [21]. 

 Given the major drawbacks of a shared medium network, we decided to go with a 

point-to-point network.  Point-to-point networks allow for connections between a single 

host and single receiver, reducing the cost to send each message as well as the time for it 

to propagate through the network.  ForPowER’s network consists of five routers.  Each 

core set is given its own router that connects it to all the processors as well as the shared 

cache.  Moreover, the scheduler is given its own dedicated router.  In addition, each 
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router is connected to all of the other routers to allow for communication between all the 

core sets and the scheduler.   

 It has been shown in [22] for a network topology similar to the one we are using 

with similar load that the per byte cost to transmit data through the network is 

approximately 46.25 pJ. 
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Chapter 3 - Task Scheduler 

 This chapter details ForPowER’s scheduler for efficiently assigning tasks to the 

different processing cores, previously presented in chapter 2.  We will also outline the 

scheduling algorithm used by the scheduler and how it determines the processor speed for 

a job. 

Since a large percentage of the overall power dissipation of an SoC can be 

dissipated by sending duplicate data over the network as well as powering this duplicate 

data multiple caches, an intelligent algorithm for assignment of the tasks to the individual 

cores is crucial. However, the assignment of the tasks to the independent processors must 

be done in such a way as to limit or negate any impact on the overall execution time of 

the program.  The scheduler determines the best method for allocation of each task to its 

respective core.  Tasks are assigned in their entirety to a single core and executed by that 

core till its completion (i.e., without preemption [34]).  

An assumption, which is the predominant one in the literature [3], is also made 

here that the fork-join structure of the program is deterministic (i.e., the number of 

forks/parallel jobs is known a priori).  Moreover, the number of parallel jobs never 

exceeds the number of processing nodes (although this model only describes 16 nodes 

meaning a maximum of 16 parallel tasks, this model has scalability to a larger number by 

adding more cores to a single cache or adding more core sets, if required by the 

program’s structure).  We assume that the expected execution time is known in advance 

to an acceptable level of accuracy. 

The scheduler proposed in this thesis is based off of the fault-tolerant scheduler 

proposed in [5].  The scheduler determines all the scheduling variables for the entire 
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system including where to assign each task, the individual processors’ clock frequencies 

and voltages, and where to synchronize all the jobs in a fork.     

Fig. 3.1 shows the system's task scheduler.  It has a dedicated processing unit to 

make decisions regarding where to route specific messages as well as determine the 

average execution times for each of the tasks.  The execution time statistics for each of 

the tasks is stored within the scheduler.  It is updated dynamically based on each task’s 

execution time.  There is a dedicated private cache for use by the scheduler’s processor.   

 When the scheduler decides what data or instructions should be sent to a specific 

processor, a message is sent to the scheduler’s block transfer engine to efficiently 

transmit blocks of data from either the instruction memory or the attached main memory 

that stores the source data.  The block transfer engine (BTE) also breaks up large blocks 

of data into individual packets that can then be sent across the network.  By having a 

dedicated BTE, it frees up the scheduler’s processor to handle other necessary  

 

 

 
Figure 3.1 - The architecture’s central scheduler consists of a single 

processor (P) with its own dedicated cache, a memory for storing task usage 

information for calculating expected execution time as well as a block 

transfer engine. 
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calculations, including updating the usage information of tasks as well as assigning them 

to cores.   

 The router in the figure is the interface of the BTE and processing unit to the 

network. 

 

3.1  Task Assignment 

 

 Jobs are assigned to specific cores in the form of a queue.  In a certain time 

period, a group of tasks, either from a fork and/or multiple parallel tasks, needs to be 

assigned.  The scheduler determines the overall lowest cost associated with assigning a 

specific task to a specific processor; once that has been found, the data are sent by the 

block transfer engine to the cache associated with the processor, even before it has 

finished completing its previous execution.  By sending it in advance, the time between 

the completion of the previous task and the beginning execution of the next is decreased 

to approximately only the time required to send data, if any, that is on another cache 

where a processor is still executing.  The scheduler also sends the speed at which that 

processor should run for that task.  

When assigning tasks to the nodes in this architecture, the cost is determined by 

four specific and distinct terms, with the overall cost for all tasks minimized.  The 

assignment cost for task, i, on processor, j, is defined as: 

 

  ysferPenaltNeedtoTranForkCostnUseProcessorIwardLocationRec ji ,  (14) 
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First, the location reward is the added benefit from staying within the same core 

set/processor instead of moving to a different location.  By remaining on a processor 

attached to the same cache, the need to transfer data to another cache, which would waste 

time and energy in the network, is eliminated.  Likewise, by staying in the same 

processor, assuming the next task is not a fork, there is no need to rescale the frequency 

or voltage of the processor itself. The reward is defined as: 

 

  pc sswardLocationRe 1  (15) 

 

where sc and sp are binary terms representing whether processor j is in the same cache set 

and same processor as task the task whose execution preceded i, respectively.  α and β are 

the rewards themselves for remaining in the same core set and processor respectively.  

These rewards are always greater than zero, and their sum is less than or equal to one. 

 ProcessorInUse is a penalty term from (14) that is used to prevent assignment of 

jobs to cores that already are in use and defined is as: 

 

jsMnUseProcessorI   (16) 

 

where sj is a binary term that represents whether processor j is currently idle or will finish 

executing before a certain preset time.  M represents the Big M method in assignment 

issuing, where M is a disproportionately large positive number that is an overwhelming 

penalty to prevent any jobs being assigned to that processor [8]. 

 ForkCost represents the expense of assigning task i to a core if it is the first task in 

a new fork.  By keeping all of the jobs of a fork on as few core sets as possible, energy 
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that would have been dissipated by originally sending the instructions and data through 

the network to all the core sets, as well as sending the data back to a single core set to 

synchronize at the join, is significantly reduced. Moreover, to give later assignments 

more flexibility, the jobs with the higher expected execution times should be placed on 

the core set with the largest number of open nodes so the smaller jobs can be moved more 

easily, if necessary.  As such, the cost for a fork is:   

 

  1
1

exp 


fo nuTn
ForkCost

ij

 (17) 

 

where noj is the number of processor cores open on processor j’s core set.  Texpi is the 

expected execution time for the task i while nf is the number of jobs in the new fork that 

is to be issued. u(nf) represents the Heaviside unit step function: 
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If the next task is not a fork, then the fork cost simplifies to one, and would be a standard 

cost across all cores. 

 The final term in (14) is the NeedtoTransferPenalty represents the need to move a 

specific job that is being executed on a core set that has a large number of open cores to 

one with less open core sets; the motivation for this is that it is better to leave core sets 

with as many open processors as possible to absorb a possible fork. It is inefficient to use 

only a small percentage of processors on a core set when there are nodes free elsewhere. 
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As such, it is beneficial to move these tasks to another core set.  ForPowER uses a cost 

function defined as:  

 

   31 
jof nnuMysferPenaltNeedtoTran  (19) 

 

This term is used to move a task off a core set only if it is not the first task in a fork, and 

the rest of the processor cores on j’s core set are idle.  This term is easily adaptable to 

core sets with a different number of processors.   

Given the cost function to assign a job i to processor j from (14), the cost to assign 

each job to each of the 16 processors is calculated.  These costs are placed into a matrix 

with R rows (one row for each job in the fork) and 16 columns (one column for each 

processor).  The cost, ci,j, to assign job i to processor j is placed in the cell that 

corresponds to row i and column j.  Using the Hungarian method on that matrix of costs, 

the optimal assignment of the R jobs to the 16 processors is determined [35].   

 

3.2  Task Synchronization 

 

 Synchronization occurs when all jobs have completed execution.  For 

synchronization to proceed, the required data from all the jobs needs to be sent to the 

processor assigned to complete synchronization.  Our algorithm allows for all jobs to 

complete executing nearly simultaneously.  As such, there is no time advantage to 

synchronization being assigned to any specific processor or core set.  Therefore, the 

metric for synchronization should be to limit the amount of data that must be sent 
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between core sets to permit synchronization.  We propose to define which core set is to 

synchronize based on the equation:  

 

anationCostSynchroniz  4  (20) 

 

where na is the number of jobs from the fork assigned to that core set. The scheduler can 

select any free processor on the core set with the lowest cost to perform the 

synchronization.   

If a job is on a different core set than the one selected to synchronize, the data, 

upon completion of execution, is sent to the synchronization core set to await the join.  If 

the job is on the same core set, then the processor simply becomes free again to be 

assigned another task to execute.   

 

3.3 Processor Speed Determination 

 

The final role of ForPowER’s scheduler is to determine the processor clock 

frequency for the processors.  As explained in Section 2.1.3, there are six different speeds 

for a processor to run at: 400 MHz, 600 MHz, 800 MHz, 1000 MHz, 1200 MHz, and 

1400 MHz.  The lower speeds consume less power than the faster speeds.   Therefore, 

when a processor is idle and not in use, the scheduler will set its clock speed to as low as 

possible (400 MHz) as this will allow it to consume the least amount of energy.   

However, when a processor is in use, it is necessary to be able to determine the 

proper processor frequency to save power without affecting the execution time of the 

overall program.  Therefore, we need to assign the critical job to always run at the 
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maximum clock frequency as it inevitably will be the section of code that determines the 

overall execution time of a given fork.   

Now knowing that the critical job will be running at the maximum clock 

frequency, we can determine the processor speed of all non-critical jobs.  It was shown in 

[29] that for a job k, there is a required workload, wk, which is the number of clock cycles 

needed to complete it. Similarly, the critical job has the maximum workload, wmax.  

Relative to the workload of the critical job, job k’s requisite clock speed, fk (in MHz), can 

be determined by: 
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Eq. (21) is derived from the linear relationship between execution time and workload for 

on-chip execution as explained in [29].  The workload ratio is multiplied by six because 

there are six possible processor speeds.  The ceiling function is used in (21) since it is 

necessary to have the execution time of non-critical jobs be less than that of the critical 

job; therefore, the ceiling function gives non-critical jobs the lowest possible clock speed 

that still allows it to finish before the critical job.  The whole sum is multiplied by 200 

because that is the step-size between the different processor speeds. 
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Chapter 4 - Experimental Results 

In this chapter, we describe the software we utilized to simulate both ForPowER 

and Kumar’s architecture.  Moreover, we present the benchmark selected to determine 

power usage for both architectures and compare the results.  Finally, we discuss the 

sensitivities of ForPowER to different usage profiles. 

When simulating a heterogeneous System on a Chip, there are two potential 

modeling paradigms that can be utilized.  The first option to simulate is at the instruction 

level, which involves simulating the processing elements implementing every single 

instruction within a given application.  However, these simulators will be inadequate for 

capturing the design tradeoffs in heterogeneous SoCs.  This arises from the prohibitively 

large simulation times for instruction set simulation (ISS) as well as the time required to 

develop the ISS-level models.   

To overcome the costs involved with simulating at the instruction level, it is 

possible to model heterogeneous SoCs at a higher level of abstraction.  These higher 

layer simulators allow designers to manipulate threads, tasks, processors, and scheduling 

and communication strategies as opposed to instructions, functional units, and registers.  

These simulators have been shown to generate comparable results to those done at the 

instruction level in [23]. 

 

4.1 Software Implementation 

 

  We used the MESH (Modeling Environment for Software and Hardware) 

simulation suite to model both Kumar’s architecture and ForPowER [24].  MESH is a  
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Figure 4.1 - MESH Simulator tool flow.  The application and architecture 

specification files are compiled with the MESH libraries to get an executable 

simulation. 

 

 

 

compiled simulator written in the standard C programming language.  This allows for 

greater readability of simulation as the conventions and syntax of C are widely used and 

standard.  Moreover, since most modern UNIX based machines have C compilers built 

into the operating system, the code is portable to UNIX-based machines. 

 Fig. 4.1 is the tool flow chart for the MESH suite.  First, the designer specifies the 

program to be simulated as well as the architecture it will be run on within .C files.  This 

is done through a set of application program interface (API) functions.  These API’s form 

the building blocks of the programs (e.g. forks, joins, threads, tasks) and the architectures 

(e.g. processors, schedulers, buses, etc.).  The API’s are provided by the precompiled 

resource and scheduler libraries that are part of the MESH suite.  When the application 

and architecture .c files are compiled, they are linked with the MESH simulation kernels 

and the precompiled libraries forming a single executable file.  [24] 
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4.2 Hydro2D Benchmark 

 

 There are numerous fork-join benchmarks that could be used to compare the 

energy consumed in the hardware of ForPowER to the energy consumed by Kumar’s 

architecture.  These include the fork-join benchmark that is part of parallel Java Grande 

Suite [37] and the NAS APPBT benchmark [7].  The benchmark we selected to use to 

test ForPowER was the Hydro2D benchmark.  It was included as part of the Standard 

Performance Evaluation Corporation 1995 (SPEC95) benchmark package [7].  It solves 

the hydronamical Navier-Stokes equations to compute galactic jets.  The benchmark is 

390 kilobytes (kB) large [25] and requires a data set that is 8.71 megabytes (MB) [26].   

Fig. 4.2 is the flow control graph of the Hydro2D benchmark.  Each numbered or 

 

 

 

Figure 4.2 - Hydro2D Benchmark flow of execution where each circle 

represents a task with the number in the circle representing its task number. 

Tasks 4, 5, and 6 spawn another level of parallelism implementing the 

functions stagf, trans1, and trans2, respectively. 
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Table 4.1 – Hydro2D average cache miss rates per 1000 memory references 

 
 Instructions Misses Data Misses 

16kB Cache 0.01 70 

64 kB Cache 0.001 70 

 

 

 

lettered circle represents a task that needs to be scheduled to a processor.  Each of the 

tasks requires approximately the same execution time.  Moreover, Hydro2D contains two 

levels of parallelism.  After task 1 completes, it forks to three separate tasks each of 

which can be scheduled on their own processor.  Task 4 then spawns (i.e., forks resulting 

in) the second level of parallelism where the subroutine, stagf, is run.  At the completion 

of all the tasks, a join occurs, which must synchronize all jobs in that fork before 

execution can continue.  Similarly, tasks 5 and 6 spawn additional parallelism for 

subroutines trans1 and trans2 respectively [7].  Both trans1 and trans2 have a single 

level of parallelism. 

We assumed 90% instruction sharing and 11% data sharing between parallel jobs, 

as established in programs of this type in [11]. 

 Hydro2D has 524 million instruction memory references and 195 million data 

memory references.  Table 4.1 summarizes the cache miss rates for instruction and data 

references for Hydro2D.  The two cache sizes (16kB and 64kB) are the cache sizes for 

Kumar’s architecture ForPowER architecture respectively [12].   

 

4.3 Experimental Results 
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 We simulated the benchmark described in section 4.2 on both ForPowER and 

Kumar’s architecture.  We used a 16kB L1 cache and 512kB L2 cache for each processor 

for Kumar architecture and a 64kB shared L1 cache and 2MB shared L2 cache for 

ForPowER (resulting in the same amount of total memory); we used 70 nm technology 

for the transistor sizes in the caches.     Since the same amount of total memory exists, the 

only additional hardware required for the caches in ForPowER are the four crossbars. 

The dynamic power consumed for a single memory access [27] as well as the 

static power consumed per 32 byte block cache [11] in the respective caches is shown in 

table 4.2. 

 The power consumption in three components, namely, the processors, the caches, 

and the network, will be compared for both architectures.  Table 4.3 summarizes the 

power dissipation in for both ForPowER and Kumar’s architecture.  All values of energy 

consumption are in millijoules.   

 The largest percentage and absolute savings in power occurred in the processors 

with over 70% decrease in power consumed by implementing dynamic voltage and  

 

 

Table 4.2 – Kumar’s and ForPowER cache dynamic and static power profiles 

 
Kumar Dynamic Power Static Power 

16 kB L1 Cache 113 pJ 0.4 pJ 

512 kB L2 Cache 501 pJ 0.4 pJ 

 
ForPowER Dynamic Power Static Power 

64 kB L1 Cache 121 pJ 0.4 pJ 

2 MB L2 Cache 950 pJ 0.4 pJ 
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Table 4.3 – Energy consumption (in mJ) of the Hydro2D benchmark on 

Kumar’s architecture and ForPowER 

 
 Kumar ForPowER 

Processors 264207 72511 

L1 Dynamic 82.9 93.8 

L2 Dynamic 6.8 13.0 

Cache Static 34820 31256 

Network 0.3 0.2 

Total 299117 103874 

 

 

 

frequency scaling.   

 In terms of cache power, ForPowER consumes slightly more dynamic power 

because of the need to power the crossbar in the L1 stage as well as the additional power 

per access for the L2 cache due to ForPowER’s L2 cache’s larger size.  However, this 

small difference is made up by the substantial static power savings from the instruction 

and data sharing among the different jobs. 

 The power dissipated in the network is very small (less than .01% of all power 

consumed).  ForPowER was still successful at saving power over Kumar in the network.   

 

4.4 Sensitivity Analysis 

 

When the amount of parallelism and sharing of instructions and data across the 

tasks is very high, the level of saving is greatest.  In this section, we compare how 

ForPowER faired against Kumar’s architecture under different workload conditions. 
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First, we utilized the same flow control graph and the size of data and instructions 

sets needed by the individual tasks from the Hydro2D benchmark (see Fig. 4.2) to test 

how ForPowER compared to Kumar’s under different levels of sharing of instructions 

and data.  To achieve this, we varied the level the sharing of instructions and data across 

the jobs in a fork.  For simplicity, we assumed that the level of sharing of instructions and 

data was identical across all the jobs.  This was simulated using the MESH suite 

described in section 4.2. 

Fig. 4.3 shows the power consumed by the caches with different levels of sharing 

of instructions and data. With very low levels of sharing (less than approximately 1%), 

Kumar’s architecture dissipated less energy than ForPowER since each L1 access in 

ForPowER has to also power the crossbar, while those in Kumar’s do not, and each 

access to the L2 cache in ForPowER consumes more energy as shown in table 4.2.  In 

section 4.3, the savings in static power from the elimination of the need to power 

redundant data made up for the difference in dynamic power.  However, low levels of 

sharing do not provide sufficient opportunity for ForPowER to overcome this additional 

dynamic power, resulting in Kumar’s architecture fairing slightly better.  It should also be 

noted for even 100% sharing, there is still substantial power consumed by the cache as 

still one copy of each byte of data and instruction must be powered.  This is the minimal 

amount of power that can be consumed for any benchmark with the same flow control 

and data as the Hydro2D. 

In addition, there is a linear relationship between the savings in energy consumed 

by the cache versus different levels of sharing.  This arises from the near uniform sharing 

of instructions and data in the tasks in the Hydro2D benchmark.      
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Figure 4.3 -  Energy consumed (in mJ) by the caches in both architectures 

under varying levels of sharing of instructions and data 
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Figure 4.4 - Energy consumed (in mJ) by the processors in both architectures 

with varying processing loads relative to the critical job 
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Next, we tested ForPowER to see how it saved power relative to Kumar’s 

architecture under various processing loads.  To do this, we assigned eight of the 

processors identical jobs that would form the critical job; these jobs each required two 

seconds of execution time.  This was kept static and used across the entire simulation.  

With the remaining eight cores, all were assigned equivalent jobs, whose execution time 

would be some percentage of the execution time of the critical job.  The percentage of the 

critical job was varied to see the total energy consumed.   This was all simulated using 

the MESH suite and results are in Fig. 4.4.   

 When the execution times of jobs were 85% or more of the critical job, 

ForPowER consumed the same amount of energy as Kumar’s architecture.  Over all other 

execution times relative to the critical job, ForPowER performed better, with a maximum 

savings of 38%.  At no possible values did ForPowER perform worse than Kumar’s. 

Furthermore, at approximately 85% of the critical job, the biggest change in 

energy consumed occurred. This results from the change in processing speed from 1400 

MHz to 1200 MHz for those executing non-critical jobs.  A similar spike in the energy 

consumed occurs each time the job that is not the critical job can be completed in 

adequate time at the next lowest speed (for a list of the available processor speeds, see 

section 2.1.3). 
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Chapter 5 - Conclusions 

 This thesis proposed a power efficient architecture to exploit fork join parallelism 

using system on a chip, using total energy consumption as the metric.  In Chapter two, we 

discussed ForPowER’s design, describing its energy-efficient processors, caches and 

network.  Chapter three described ForPowER’s intelligent scheduling and 

synchronization algorithm.   

 Chapter four compared ForPowER’s results with the results from Kumar’s 

architecture, as presented in [3] to determine whose architecture consumed less energy.  

It was shown that in all categories tested (processor, cache, and network power) 

ForPowER outperformed Kumar’s on the Hydro2D benchmark, leading to a total energy 

savings of over 65%.  Moreover, we explained that for all but the lowest levels of data 

and instruction sharing (less than 1%), ForPowER’s caches consumed less energy than 

Kumar’s architecture.  Furthermore, regardless of how long the execution time of each 

job is compared to the critical job, ForPowER always consumes less or the same amount 

of energy as Kumar.  

 The hardware required for the energy savings is only slightly more than that 

utilized in Kumar’s architecture.  The added hardware included the four crossbars for the 

shared caches as well as the hardware required for scaling the processors’ clock 

frequencies and supply voltages.  Moreover, our architecture was also able to utilize one 

less processor than Kumar’s architecture by eliminating the need for a dedicated 

synchronization processor. 

 With the successful proof of concept, the next logical step is to synthesize this 

architecture to a series of field programmable gate array (FPGA) boards.  This hardware 



 46 

implementation scheme would allow for energy consumption results on actual hardware, 

while not necessitating special hardware construction. 
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Appendix A – Nomenclature 

 

 

 

 

α : Reward in the assignment algorithm for scheduling a job to continue executing on the 

same core set 

 

β : Reward in the assignment algorithm for scheduling a job to continue executing on the 

same processor 

 

A : Average number of CMOS gates that switch states per cycle 

 

ALU : Arithmetic Logic Unit 

 

API : Application Program Interface 

 

ASIC : Application specific integrated circuit 

 

BTE : Block transfer engine 

 

C : CMOS gate’s capacitive load 

 

CPU : Central processing unit 

 

de : Energy consumed by the cache in one memory access 

 

DEx : Total dynamic energy consumed by cache level x 

 

DSP : Digital Signal Processor 

 

ex : Energy consumed by the crossbar in one memory access 

 

f : Processor clock frequency 

 

fmax : Processors maximum clock frequency 

 

ForPowER : The Fork-join Power Efficient aRchitecture 

 

GHz : Gigahertz 

 

Ishort : Short circuit current 

 

ISS : Instruction set simulation 

 

Ileak : Leakage current of the CMOS logic 
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kB : Kilobyte 

 

L1 : Level one of the cache 

 

L2 : Level two of the cache 

 

lea : Leakage energy of a cache block per cycle 

 

LEx : Total leakage energy consumed by cache level x  

 

MB : Megabyte 

 

MESH : Modeling Environment for Software and Hardware 

 

MHz : Megahertz 

 

noj : Number of processors open on processor j’s core set 

 

Nhit : Number of cache hits 

 

Nmiss : Number of cache misses 

 

NOOP : No operation 

 

rk : Number of tasks required to complete job k 

 

R : Number of jobs in a fork 

 

S : Synchronization processor in Kumar’s architecture 

 

SoC : System on a chip 

 

Texpi : Expected execution time of task i 

 

u(x) : Heaviside’s unit step function, if x is greater than 0, then u(x) = 1, otherwise  

u(x)  = 0 

 

V : Supply voltage of the processor 

 

Vthreshold : Threshold voltage of the transistor which determines if it is in the high or low 

state 

 



 


