
Clustering-Based, Fully Automated Mixed-Bag
Jigsaw Puzzle Solving

Zayd Hammoudeh(B) and Chris Pollett

Department of Computer Science, San José State University, San José, CA, USA
{zayd.hammoudeh,chris.pollett}@sjsu.edu

Abstract. The jig swap puzzle is a variant of the traditional jigsaw
puzzle, wherein all pieces are equal-sized squares that must be placed
adjacent to one another to reconstruct an original, unknown image. This
paper proposes an agglomerative hierarchical clustering-based solver that
can simultaneously reconstruct multiple, mixed jig swap puzzles. Our
solver requires no additional information beyond an unordered input bag
of puzzle pieces, and it significantly outperforms the current state of the
art in terms of both the reconstructed output quality as well the num-
ber of input puzzles it supports. In addition, we define the first quality
metrics specifically tailored for multi-puzzle solvers, the Enhanced Direct
Accuracy Score (EDAS), the Shiftable Enhanced Direct Accuracy Score
(SEDAS), and the Enhanced Neighbor Accuracy Score (ENAS).

1 Introduction

The first jigsaw puzzle was introduced over 250 years ago. Despite being con-
sidered a hobby for children, puzzle solving is strongly NP-complete when inter-
piece compatibility is an unreliable metric for determining adjacency [1]. Jigsaw
puzzle techniques have been applied to a variety of disciplines including: archae-
ological artifact reconstruction [8], deleted file analysis [5], image editing [3],
shredded document reconstruction [15], and DNA fragment reassembly [9].

Most recent automated puzzle solving research has focused on the jig swap
puzzle, which is similar to a traditional jigsaw puzzle except that all pieces are
equal-sized squares. This makes them significantly more challenging to solve since
piece shape cannot be used. In addition, the original “ground-truth” solution
image is generally unknown by the solver.

The jig swap puzzle problem is subclassified into three different categories
based on the level of difficulty [4]. The simplest variety is the Type 1 puzzle,
which fixes piece orientation by disallowing their rotation. While the puzzle’s
image contents are unknown, the overall dimensions are known as well as poten-
tially the correct location of one or more pieces. In contrast, Type 2 jig swap
puzzles allow piece rotation, which for puzzles of n pieces increases the number
of possible solutions by a factor of 4n; the dimensions for this type of puzzle
may be unknown. Mixed-bag puzzles contain pieces from multiple input images
as shown in Fig. 1. Puzzle piece orientation may be provided, but image dimen-
sions are unknown and may vary. Most current mixed-bag solving algorithms
require the specification of the number of ground-truth inputs.
c© Springer International Publishing AG 2017
M. Felsberg et al. (Eds.): CAIP 2017, Part II, LNCS 10425, pp. 205–217, 2017.
DOI: 10.1007/978-3-319-64698-5 18

206 Z. Hammoudeh and C. Pollett

Mixed 6,255 Piece Input

540 Pieces, SEDAS=1 805 Pieces, SEDAS=1

805 Pieces,
SEDAS=0.990

805 Pieces,
SEDAS=0.990

3,300 Pieces, SEDAS=0.998

Fig. 1. Fully-automated mixed-bag puzzle solving: Our solver generated these results
without any external information, including the number of input puzzles. The average,
weighted EDAS and ENAS scores were 0.997 and 0.993 respectively.

In 2011, Pomeranz et al. developed a greedy, Type 1 jig swap puzzle solver
that has been foundational for much of the subsequent research. They introduced
the concept of best buddies, which are two puzzle piece sides (e.g., left, right, top,
bottom) that are mutually more similar to each other than they are to any other
piece’s side. Pomeranz et al. also defined multiple test datasets, some of which
are used in this paper.

Paikin and Tal [11] advanced the current state of the art in 2015 with their
greedy solver that supports both missing pieces and mixed-bag puzzles. Their
approach has two primary limitations. First, the solver must be provided the
number of ground-truth inputs. In addition, seed piece selection is based on very
localized information (i.e., only 13 pieces), which often results in poor runtime
decisions such as multiple puzzles spawning from the same ground-truth input.
These suboptimal selections can catastrophically degrade solution quality.

This paper’s primary contribution is a novel, clustering-based, mixed-bag
puzzle solver that significantly outperforms the state of the art both in terms of
solution quality and the number of supportable puzzles. Unlike previous work,
our approach requires no externally supplied, “oracle” information including the
number of ground-truth inputs.

In addition, previously proposed, single-puzzle-solver performance metrics [2]
are unusable for mixed-bag puzzles since they do not account for the presence
of pieces from different images in a single output nor for the dispersion of one

Clustering-Based, Fully Automated Mixed-Bag Jigsaw Puzzle Solving 207

Algorithm 1. The Mixed-Bag Solver
1: function MixedBagSolver(pieces)
2: segments ← Segmentation(pieces)
3: overlap matrix ← Stitch(segments, pieces)
4: clusters ← Cluster(segments, overlap matrix)
5: seeds ← SelectSeeds(clusters)
6: solved puzzles ← FinalAssembly(seeds, pieces)
7: return solved puzzles

input’s pieces across multiple outputs. As such, we introduce the first quality
metrics for mixed-bag puzzles. We also enhance an existing metric to correct for
the potential to be misleadingly punitive when puzzle dimensions are unknown.

2 Overview of the Mixed-Bag Solver

Humans commonly solve jigsaw puzzles by correctly assembling subregions and
then iteratively merge those smaller reconstructions to form larger ones. This
strategy forms the basis of our Mixed-Bag Solver shown in Algorithm1. Its only
input is the combined bag of pieces. The number of puzzles, their dimensions,
and piece orientation are all unknown.

The first Mixed-Bag Solver stage identifies disjoint sets of pieces (i.e., seg-
ments) where there is strong confidence of correct placement. Next, the solver
quantifies inter-segment relationships via the stitching process; agglomerative
hierarchical clustering uses these quantified similarity scores to group related
segments. Each resulting segment cluster represents what the solver identified
as a single ground-truth input. A seed piece is selected from each cluster for use
in the final assembly stage, which generates the reconstructed puzzle output(s).

Although not shown in Algorithm1, the Mixed-Bag Solver requires a placer,
which organizes (i.e., places) the individual pieces. Our architecture is indepen-
dent of the specific placer used, granting it significant flexibility. For all experi-
ments in this paper, we used the placer algorithm proposed by Paikin and Tal [11]
as it is the current state of the art and due to its multiple puzzle support.

3 Segmentation

Segmentation provides basic structure to the unordered bag of pieces by parti-
tioning it into disjoint, ordered sets, known as segments, which are partial puzzle
assemblies where there is a high degree of confidence of correct piece placement.

Segmentation is performed across one or more rounds. Initially, pieces have no
segment assignment. In each round, all unassigned pieces are assembled together
as though they belong to the same input image as shown in Fig. 2; this eliminates
the need to make any assumptions regarding the number of input puzzles. Once
the pieces have been placed, the single, reconstructed puzzle is segmented as

208 Z. Hammoudeh and C. Pollett

(a) Ground-Truth
Images

(b) Reconstruction as a
Single Puzzle

(c) Segmented Output

Fig. 2. Segmentation example: Three ground-truth inputs of two different sizes are
shown in (a). All pieces are placed in the single, reconstructed output puzzle in (b).
Segmented output in (c) is shown with any contiguous group of matching colored pieces
belonging to the same segment. Stitching pieces are denoted with a white “+” mark.

described in Algorithm 2, which is partially based on the approach originally
proposed by Pomeranz et al. in [13].

Segments in the single, reconstructed output are found iteratively, with all
pieces eventually assigned to a single segment. Each segment’s growth starts
by adding one seed piece from the unassigned pool to an empty queue. Pieces
are popped from the queue and added to the current, expanding segment. If
the popped piece’s neighbor in the reconstructed output is both in unassigned
and also its best buddy, then that neighbor is added to the queue. A segment’s
growth terminates once no pieces remain in the queue to be popped.

As mentioned previously, two puzzle pieces, pi and pj , are best buddies on
their respective sides, sx and sy, if they mutually more similar to each other than
they are to a side, sz, of any other piece, pk. Given a metric, C, that quantifies
inter-piece similarity, we define the best buddy relationship as:

∀pk �= pj∀sz, C(pi, sx, pj , sy) > C(pi, sx, pk, sz)
and

∀pk �= pi∀sz, C(pj , sy, pi, sx) > C(pj , sy, pk, sz).
(1)

This approach differs slightly from that of [11,13,14] by limiting best buddies to
between exclusively two piece sides. This change is required because images with
very low variation (e.g., those generated by a computer) often have large numbers
of “best buddy cliques” that significantly degrade segmentation performance.

Correctly assembled regions from multiple ground-truth inputs commonly
merge into a single segment via very tenuous linking. Our segmentation algo-
rithm trims each segment by removing all articulation points, which is any piece
whose removal increases the number of connected segment components. Also
removed are any pieces disconnected from the segment’s seed after articulation

Clustering-Based, Fully Automated Mixed-Bag Jigsaw Puzzle Solving 209

Algorithm 2. Pseudocode for segmenting the single, reconstructed puzzle
1: function Segment(puzzle)
2: puzzle segments ← {}
3: unassigned ← {all pieces in puzzle}
4: while |unassigned| > 0 do
5: segment ← new empty segment
6: seed ← next piece in unassigned
7: queue ← [seed]
8: while |queue| > 0 do
9: piece ← next piece in queue

10: add piece to segment
11: for each neighbor in Neighbors(puzzle, piece)

⋂
unassigned do

12: if IsBestBuddy(neighbor, piece) then
13: add neighbor to queue
14: remove neighbor from unassigned

15: remove segment articulation pieces
16: remove segment pieces disconnected from seed
17: add removed pieces back to unassigned
18: add segment to puzzle segments

19: return puzzle segments

point deletion. All pieces no longer part of the segment are returned to the
unassigned pool. Once this is completed, the segment is in its final form.

At the end of a segmentation round, only segments meeting a set of crite-
ria are saved. First, all segments must exceed a minimum size. In our experi-
ments, a minimum segment size of seven resulted in the best solution quality.
If the largest segment exceeds this minimum size, it is automatically saved.
Any other segment is saved if its size exceeds both the minimum and some
fraction, α (where 0 < α ≤ 1), of the largest segment. We found that α = 0.5
provided appropriate balance between finding the largest possible segments and
reducing segmentation’s execution time.

The only change in subsequent segmentation rounds is the exclusion of all
pieces already assigned to a saved segment. Segmentation terminates once either
all pieces are assigned to a saved segment or when no segment in a given round
exceeds the minimum savable size.

4 Identifying Related Segments

Traditional image stitching involves combining multiple overlapping photographs
to form a single panoramic or higher resolution image. The Mixed-Bag Solver’s
Stitching stage uses a similar technique to identify segments that originate from
the same ground-truth input.

210 Z. Hammoudeh and C. Pollett

Ground-Truth Segment Images
Segment Grid

Partitioning with
Stitching Pieces

Mini-Assembly

Fig. 3. An input image split into two disjoint segments that are sub-partitioned into
a grid of (colored) cells. Stitching pieces are denoted with a white “+” mark. The
mini-assembly, which uses a stitching piece from the upper segment, is composed of
pieces from both segments (e.g., the building’s roof and columns).

4.1 Stitching

Segmentation commonly partitions a single image into multiple disjoint seg-
ments. If a pair of such segments are adjacent in an original input, it is expected
that they would eventually overlap if allowed to expand. A larger intersection
between these two expanded segments (i.e., puzzle piece sets) indicates a stronger
relationship. In contrast, if a ground-truth image consists of only a single, saved
segment, then that segment generally resists growth. Since inter-segment spa-
tial relationships, if any, are unknown by the solver, segment growth must be
allowed, but never forced, to proceed in all directions.

Rather than attempt to grow a segment in its complete form, the Mixed-
Bag Solver tests for localized expansion through the use of grid cells, which
are non-overlapping subregions of a segment. These grid cells are defined by
placing a bounding rectangle around the entire segment. Then starting from
the upper left corner, this rectangle is partitioned into a grid of a target width
(e.g., the equivalent of 10 puzzle pieces wide as used in this paper). This process
is shown in Fig. 3 where an image split into two segments, both of which are
further subdivided into three grid cells. If a segment’s dimensions are not evenly
divisible by the target width, then any grid cells along the segment’s bottom
and rightmost boundaries will be narrower than this ideal target.

Intuitively, it is obvious that expansion can only occur along a segment’s
edges. This is done by focusing on those grid cells that contain at least one piece
next to an open location, which is any puzzle slot not occupied by a member of
the segment including both the segment’s external perimeter and any internal
voids. For each such grid cell, localized expansion is done via a mini-assembly
(MA). Unlike traditional placement, the MA places only a fixed number of pieces
(e.g., 100 for all experiments in this paper). This placement size partially dictates
the solver’s inter-segment relationship sensitivity.

The MA’s placement seed is referred to as a stitching piece and must be a
member of the candidate grid cell. The selection of an appropriate stitching piece
is critical; for example, if a piece too close to a boundary is selected, erroneous

Clustering-Based, Fully Automated Mixed-Bag Jigsaw Puzzle Solving 211

coupling with unrelated segments may occur. As such, the algorithm finds the set
of pieces, if any, within the candidate grid cell whose distance to the nearest open
location equals a predefined target (we used a distance of 3 for our experiments).
If no pieces satisfy that distance criteria, the target value is decremented until at
least one satisfying piece is identified. Then from this pool of possible stitching
pieces, the one closest to the grid cell’s center is used for stitching.

By selecting the stitching piece closest to the grid cell’s center, the solver
is able to enforce an approximate maximum inter-stitching piece spacing. This
ensures that stitching pieces are not too far apart, which would hinder the detec-
tion of subtle inter-segment relationships. It also prevents multiple near-identical
mini-assemblies, caused by stitching pieces being too close together, that con-
tribute little added value.

4.2 Quantifying Inter-Segment Relationships

A mini-assembly is performed for each stitching piece, ζx, in segment, Φi, where
ζx ∈ Φi. If the mini-assembly output, MAζx , is composed of pieces from multiple
segments, there is a significantly increased likelihood that those segments come
from the same ground-truth input.

Equation (2) defines the overlap score between a segment, Φi, and any other
segment, Φj . The intersection between mini-assembly output, MAζx , and seg-
ment Φj is normalized with respect to the size of both, since the smaller of the
two dictates the maximum possible overlap. Also, this score must use the max-
imum intersection across all of the segment’s mini-assemblies as two segments
may only be adjacent along a small portion of their boundaries.

OverlapΦi,Φj
= max

ζx∈Φi

|MAζx

⋂
Φj |

min(|MAζx |, |Φj |) (2)

Each segment generally has different mini-assembly outputs, meaning the
overlap scores for each permutation of segment pairs is usually asymmetric. All
overlap scores are combined into the m by m, square Segment Overlap Matrix,
whose order, m, is the total number of saved segments.

5 Segment Clustering and Final Assembly

After stitching, the solver performs agglomerative hierarchical clustering of the
saved segments to determine the number of ground-truth inputs. This neces-
sitates that the overlap matrix be triangularized into the Cluster Similarity
Matrix. Each element, ωi,j , in this new matrix represents the similarity (bounded
between 0 and 1 inclusive) of segments, Φi and Φj ; it is calculated via:

ωi,j =
OverlapΦi,Φj

+ OverlapΦj ,Φi

2
. (3)

In each clustering round, the two most similar segment clusters, Σx and Σy,
are merged if their similarity exceeds a specified threshold. Based on a dozen

212 Z. Hammoudeh and C. Pollett

random samplings of between two to five images from the dataset in [12], we
observed a minimum similarity of 0.1 provided the best clustering accuracy.

Inter-cluster similarity, rx∪y,z, with respect to any other remaining segment
cluster, Σz, is updated according to the single-linkage paradigm as shown in
Eq. (4), wherein the similarity between any pair of clusters equals the similarity of
their two most similar members. Solely the maximum similarities are considered
as two clusters may only be adjacent along two of their member segments. The
number of segment clusters remaining at the end of hierarchical clustering is the
Mixed-Bag Solver’s estimate of the ground-truth input count.

rx∪y,z = max
Φi∈(Σx∪Σy)

(

max
Φj∈Σz

ωi,j

)

. (4)

Some modern jigsaw puzzle placers including [11,13,14] use a kernel-growing
technique. If the placer used by the Mixed-Bag Solver requires this additional
step, we select a single seed from each segment cluster. This approach leads to
better seed selection since most other placers make their seed decisions either
randomly or greedily at runtime. Once this is completed, final piece placement
begins simultaneously across all puzzle seeds. The resulting fully reconstructed
puzzles, with all pieces placed, are the Mixed-Bag Solver’s final outputs.

6 Quality Metrics for Mixed-Bag Puzzles

The direct and neighbor accuracy metrics for quantifying the quality of single
puzzle reconstructions were defined in [2] and used by [4,11,13,14]. However,
both measures are unusable for mixed-bag puzzles since neither account for
two complications unique to this problem, specifically that pieces from multiple
ground-truth inputs may be placed in the same generated output and that pieces
from a single input image can be spread across different outputs [7].

6.1 Enhanced and Shiftable Direct Accuracy

Puzzle solving involves generating a set of output puzzles, S, from a set of
inputs, P . Each Pi ∈ P is composed of ni pieces. ci,j is the number of pieces in
the same location in both Pi and output, Sj ∈ S. In contrast, mi,j is the total
number of pieces from Pi in Sj , making 0 ≤ ci,j ≤ mi,j ≤ ni.

Standard direct accuracy (where |P | = |S| = 1 and n1 = m1,1) is the fraction
of pieces that are correctly placed in the reconstructed output. It is defined as:

DA =
c1,1

n1
. (5)

A solved image is perfectly reconstructed if the location of all pieces exactly
match the original image (i.e., DA = 1) [4].

Our Enhanced Direct Accuracy Score (EDAS) in Eq. (6) addresses standard
direct accuracy’s deficiencies for mixed-bag puzzles in three primary ways. First,

Clustering-Based, Fully Automated Mixed-Bag Jigsaw Puzzle Solving 213

since pieces from Pi may be in multiple reconstructed puzzles, EDAS uses the
maximum score across all of S so as to focus on the best overall reconstruction
of Pi. Second, dividing by ni marks as incorrect any piece from Pi that is not
in Sj . Lastly, the summation of all mk,j penalizes for the placement of any pieces
from inputs other than Pi.

EDASPi
= max

Sj∈S

ci,j

ni +
∑

k �=i(mk,j)
(6)

Both standard and enhanced direct accuracy can be misleadingly punitive
for shifts in the output, in particular when the solved puzzle’s boundaries are
not fixed/known. As noted in [7], even a single misplaced piece can cause these
metrics to drop to zero. Direct accuracy more meaningfully quantifies output
quality if the comparison reference location, l, is allowed to shift within a fixed set
of possible locations, Lj , in Sj . As such, our Shiftable Enhanced Direct Accuracy
Score (SEDAS) in Eq. (7) updates the term ci,j to ci,j,l to denote the use of this
variable reference when determining the correctly placed piece count.

SEDASPi
= max

Sj∈S

(

max
l∈Lj

ci,j,l

ni +
∑

k �=i(mk,j)

)

(7)

For this paper, Lj was the set of all puzzle locations within the radius defined
by the Manhattan distance between the upper left corner of Sj and the nearest
puzzle piece, inclusive. An alternative approach is for Lj to be the set of all
locations in Sj , but that can be computationally prohibitive for large puzzles.

6.2 Enhanced Neighbor Accuracy

Standard neighbor accuracy (where |P | = |S| = 1) is the fraction of puzzle piece
sides with the same neighbors in both the input and output puzzles. If ai,j is the
number of puzzle piece sides with matching neighbors in both Pi and Sj , then
for square pieces, this single-puzzle metric is formally defined as:

NA =
a1,1

4n1
. (8)

Similar to the reasons described for EDAS, our Enhanced Neighbor Accuracy
Score (ENAS), which is defined as:

ENASPi
= max

Sj∈S

ai,j

4(ni +
∑

k �=i(mk,j))
(9)

addresses standard neighbor accuracy’s limitations for mixed-bag puzzles. Neigh-
bor accuracy is immune to shifts [2] making a shiftable version of it unnecessary.

214 Z. Hammoudeh and C. Pollett

Table 1. Number of solver experiments for each puzzle input count

#Puzzles 2 3 4 5

#Iterations 55 25 8 5

7 Experimental Results

Our experiments followed the standard puzzle parameters established by previ-
ous work including [2,4,11,13,14]. All of the square puzzle pieces were 28 pixels
wide. We also used the three, 20 image datasets of sizes 432, 540, and 805 pieces
from [2,10,12]. Only the more challenging Type 2 mixed-bag puzzles were inves-
tigated, meaning piece rotation and puzzle(s) dimensions were unknown.

The current state of the art, Paikin and Tal’s algorithm, was used as the
comparative performance baseline. In each test, two to five images were randomly
selected, without replacement, from the 805 piece dataset [12] and input into the
two solvers. Table 1 shows the number of tests performed for each input count.

7.1 Determining the Number of Input Puzzles

Most previous solvers including [2,11,13,14] either assumed or were provided
the number of input images. In contrast, the Mixed-Bag Solver determines this
information via hierarchical clustering.

Clustering a Single Input Image: The solver’s accuracy determining the
number of inputs when passed only a single image represents its overall perfor-
mance ceiling. For the 432 [2], 540 [10], and 805 piece [12] datasets, the solver’s
accuracy determining that the pieces came from a single puzzle was 100%, 80%,
and 85% respectively. While there was a degradation in performance for larger
puzzles, it was not significant. In all cases where an error was made, the solver
reported that there were two input images.

Input puzzle count errors are more likely for images with large areas of lit-
tle variation (e.g., a clear sky, smooth water, etc.). These incorrectly classified
images have on average lower numbers of best buddies (by 8% and 12% for
the 540 and 805 piece datasets respectively), which adversely affected segmen-
tation.

Clustering Multiple Input Images: Figure 4 shows the Mixed-Bag Solver’s
performance identifying the number of input puzzles when randomly selecting,
without replacement, multiple images from the 805 piece dataset. The number
of input images was correctly determined in 65% of tests. Likewise, the solver
overestimated the number of inputs by more than one in less than 8% tests, with
a maximum overestimation of three. Across all experiments, it never underesti-
mated the input puzzle count. This indicates the solver can over-reject cluster
mergers due to clusters being too isolated to merge with others.

Clustering-Based, Fully Automated Mixed-Bag Jigsaw Puzzle Solving 215

0 1 2 3
0

20

40

60

80 75

16
7

2

44 48

4 4

50 50

0 0

60

20 20

0

Size of Input Puzzle Count Error

F
re

q
u
en

cy
(%

)

2 Puzzles 3 Puzzles 4 Puzzles 5 Puzzles

Fig. 4. Multiple input puzzle clustering Accuracy: A correct estimation of the input
puzzle count is an error of “0.” An overestimation of a single puzzle is an error of “1.”

7.2 Comparison of Solver Output Quality for Multiple Input
Images

Table 2 contains the comparative results when both solvers were supplied mul-
tiple input images. The values for each of the three metrics, namely SEDAS,
ENAS, and percentage of puzzles reassembled perfectly, are averaged. The
Mixed-Bag Solver (MBS) results are subdivided between when the number of
input puzzles was correctly determined (denoted with a “†”) versus all combined
results (“‡”); the former value represents the performance ceiling had our solver
been provided the input puzzle count like Paikin and Tal’s algorithm.

Despite receiving less information, the quality of our results exceeded that of
Paikin and Tal by between 2.5 to 8 times for SEDAS and up to four times ENAS.
The Mixed-Bag Solver was also substantially more likely to perfectly reconstruct
the images. Furthermore, unlike Paikin and Tal, our algorithm showed no sig-
nificant performance degradation as the number of input puzzles increased.

Table 2. Solver performance comparison for multiple input puzzles. Results with “†”
indicate the Mixed-Bag Solver (MBS) correctly estimated the input puzzle count
while “‡” values include all MBS results.

Puzzle count Average SEDAS Average ENAS Perfect reconstruction

MBS† MBS‡ Paikin MBS† MBS‡ Paikin MBS† MBS‡ Paikin

2 0.850 0.757 0.321 0.933 0.874 0.462 29.3% 23.6% 5.5%

3 0.953 0.800 0.203 0.955 0.869 0.364 18.5% 18.8% 1.4%

4 0.881 0.778 0.109 0.920 0.862 0.260 25.0% 15.6% 0%

5 0.793 0.828 0.099 0.868 0.877 0.204 20.0% 24% 0%

216 Z. Hammoudeh and C. Pollett

It should also be noted the Mixed-Bag Solver’s performance scores are sim-
ilar irrespective of whether the input puzzle count estimation was correct. This
indicates that any extra puzzles generated were relatively insignificant in size.

Ten Puzzle Solving: The previous maximum number of puzzles reconstructed
simultaneously was five by Paikin and Tal. In contrast, our solver reconstructed
the 10 image dataset in [6], with a SEDAS and ENAS greater than 0.9 for
all images. Despite being provided the input puzzle count, Paikin and Tal’s
algorithm only had a SEDAS and ENAS greater than 0.9 for a single image as
their solver struggled to select quality seeds for that many puzzles.

8 Conclusion and Future Work

We presented an algorithm for simultaneous reassembly of multiple jig swap
puzzles without prior knowledge. Despite the current state of the art requiring
specification of the input puzzle count, our approach still outperforms it in terms
of both the output quality and the supportable number of input puzzles.

Potential improvements to our solver remain that merit further investigation.
First, rather than performing segmentation through placement, it may be faster
and yield better, larger segments if the entire set of puzzle pieces were treated
as nodes in an undirected graph with edges being the best buddy relationships.
This would enable segment identification through the use of well-studied graph
partition techniques. In addition, our approach requires that stitching pieces
be members of a saved segment. Superior results may be achieved if pieces not
assigned to a segment are also used, as they may help bridge inter-segment gaps.

References

1. Altman, T.: Solving the jigsaw puzzle problem in linear time. Appl. Artif. Intell.
3(4), 453–462 (1990)

2. Cho, T.S., Avidan, S., Freeman, W.T.: A probabilistic image jigsaw puzzle solver.
In: CVPR, pp. 183–190 (2010)

3. Cho, T.S., Butman, M., Avidan, S., Freeman, W.T.: The patch transform and its
applications to image editing. In: CVPR, pp. 1489–1501 (2008)

4. Gallagher, A.C.: Jigsaw puzzles with pieces of unknown orientation. In: CVPR,
pp. 382–389 (2012)

5. Garfinkel, S.L.: Digital forensics research: The next 10 years. Digit. Invest. 7, S64–
S73 (2010)

6. Hammoudeh, Z.S.: Ten puzzle dataset. http://www.cs.sjsu.edu/faculty/pollett/
masters/Semesters/Spring16/zayd/?10 puzzles.html

7. Hammoudeh, Z.S.: A Fully Automated Solver for Multiple Square Jigsaw Puzzles
Using Hierarchical Clustering. Master’s thesis, San José State University (2016)

8. Koller, D., Levoy, M.: Computer-aided reconstruction and new matches in the
forma urbis romae. Bullettino Della Commissione Archeologica Comunale di Roma
2, 103–125 (2006)

9. Marande, W., Burger, G.: Mitochondrial DNA as a genomic jigsaw puzzle. Science
318(5849), 415 (2007)

http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring16/zayd/?10_puzzles.html
http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Spring16/zayd/?10_puzzles.html

Clustering-Based, Fully Automated Mixed-Bag Jigsaw Puzzle Solving 217

10. Olmos, A., Kingdom, F.A.A.: McGill calibrated colour image database. http://
tabby.vision.mcgill.ca/

11. Paikin, G., Tal, A.: Solving multiple square jigsaw puzzles with missing pieces. In:
CVPR, pp. 4832–4839 (2015)

12. Pomeranz, D., Shemesh, M., Ben-Shahar, O.: Computational jig-saw puzzle solving.
https://www.cs.bgu.ac.il/∼icvl/icvl projects/automatic-jigsaw-puzzle-solving/

13. Pomeranz, D., Shemesh, M., Ben-Shahar, O.: A fully automated greedy square
jigsaw puzzle solver. In: CVPR, pp. 9–16 (2011)

14. Sholomon, D., David, O., Netanyahu, N.S.: A genetic algorithm-based solver for
very large jigsaw puzzles. In: CVPR, pp. 1767–1774 (2013)

15. Zhu, L., Zhou, Z., Hu, D.: Globally consistent reconstruction of ripped-up docu-
ments. Trans. Pattern Anal. Mach. Intell. 30, 1–13 (2008)

http://tabby.vision.mcgill.ca/
http://tabby.vision.mcgill.ca/
https://www.cs.bgu.ac.il/~icvl/icvl_projects/automatic-jigsaw-puzzle-solving/

	Clustering-Based, Fully Automated Mixed-Bag Jigsaw Puzzle Solving
	1 Introduction
	2 Overview of the Mixed-Bag Solver
	3 Segmentation
	4 Identifying Related Segments
	4.1 Stitching
	4.2 Quantifying Inter-Segment Relationships

	5 Segment Clustering and Final Assembly
	6 Quality Metrics for Mixed-Bag Puzzles
	6.1 Enhanced and Shiftable Direct Accuracy
	6.2 Enhanced Neighbor Accuracy

	7 Experimental Results
	7.1 Determining the Number of Input Puzzles
	7.2 Comparison of Solver Output Quality for Multiple Input Images

	8 Conclusion and Future Work
	References

