
Learning from Positive & Unlabeled Data 
with Arbitrary Positive Shift

Two Joint Data Distributions: Source (training) & Target (test)

Positive-Unlabeled (PU) Learning: Trains a binary classifier ( ) 
using only positive-labeled and unlabeled data

• Common Simplifying Assumption: Positive-labeled set is representative of 
the target positive class

Biased-Positive, Unlabeled (bPU) Learning: Positive-labeled set is 
biased w.r.t. the target positive class

• Positive bias is commonly formulated as a selection bias (e.g., PUSB [1]) 
or covariate shift (e.g., PUc [5]) problem
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What is an aPU Learning Dataset?Motivation

github.com/ZaydH/arbitrary_pu

Three Independently Sampled Datasets
      :  Positive-labeled set (biased) sample of training pos. class-conditional

      : Training unlabeled set i.i.d. sample of training marginal distribution

     : Test unlabeled set i.i.d. sample of test marginal distribution
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Solution #1: Unlabeled-Unlabeled Learning

Solution #2: Novel Recursive Risk Estimator

Our Proposed Problem Setting

Arbitrary-Positive, Unlabeled (aPU) Learning: Positive-labeled set 
is biased arbitrarily w.r.t. the target positive class

• More general and harder than bPU learning

• Our Key Insight: aPU learning is possible provided two unlabeled 
sets as in [5] when all negative examples are generated from a single 
distribution

• Real-World aPU Learning Applications: Land-cover classification, 
epidemiology, and adversarial domains
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Takeaway: All of our methods handle large positive shifts better than prior 
work, even in the realistic case of a shifting negative class

And a lot more! Additional baselines & many more datasets in the paper…

Simplifying PU Empirical Risk Estimation

Unbiased PU (uPU) Risk Estimator [3]: For positive prior 

Non-Negative PU (nnPU) Estimator [4]: Addresses uPU’s propensity to 
implausibly overfit.  Biased but consistent. Needs custom ERM framework

Our Absolute-value PU (abs-PU) Estimator: Statistically consistent. Yields 
models as good or better than nnPU with much simpler optimization.

π := p(y = 1)

Main Idea: Train final classifier  in two-steps by first extracting surrogate 
negative set  from unlabeled training set 

Step #1: Train PU probabilistic classifier  using 
datasets  and 

• Surrogate negative set  is a statistically consistent estimate of negative-class 
risk.  soft weights unlabeled training set ’s loss  via :

Step #2: Train final classifier using one of two novel risk estimators:

• Weighted Unlabeled-Unlabeled (wUU): Uses only unlabeled data, i.e., 
unlabeled test set  and surrogate negative set  formed from 

• Arbitrary-Positive, Negative, Unlabeled (aPNU): Uses all available data, i.e., 
arbitrary-positive , surrogate negative , & unlabeled test 

Complete Two-Step Methods: PU2wUU† & PU2aPNU†
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Main Idea: Train an aPU learner via a statistically consistent joint method

PURR†: Our Positive-Unlabeled Recursive Risk estimator

Intuition: Recursively nest du Plessis et al.’s [3] PU risk decomposition
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